Author: Antonsen, T.M.
Paper Title Page
MOPA69 Adjoint Optimization Applied to Flat to Round Transformers 199
 
  • T.M. Antonsen, B.L. Beaudoin, S. Bernal, L. Dovlatyan, I. Haber, P.G. O’Shea, D.F. Sutter
    UMD, College Park, Maryland, USA
 
  Funding: This work was supported by DOE-HEP Awards No. DESC0010301 and DESC0022009
We pre­sent the nu­mer­i­cal op­ti­miza­tion, using ad­joint tech­niques, of Flat-to-Round (FTR) trans­form­ers op­er­at­ing in the strong self-field limit. FTRs trans­form an un­mag­ne­tized beam that has a high as­pect ratio, el­lip­ti­cal spa­tial cross sec­tion, to a round beam in a so­le­noidal mag­netic field. In its sim­plest form the flat to round con­ver­sion is ac­com­plished with a triplet of quadrupoles, and a so­le­noid. FTR trans­form­ers have mul­ti­ple ap­pli­ca­tions in beam physics re­search, in­clud­ing ma­nip­u­lat­ing elec­tron beams to cool co-prop­a­gat­ing hadron beams. Pa­ra­me­ters that can be var­ied to op­ti­mize the FTR con­ver­sion are the po­si­tions and strengths of the four mag­net el­e­ments, in­clud­ing the ori­en­ta­tions and axial pro­files of the quadrupoles and the axial pro­file and strength of the so­le­noid’s mag­netic field. The ad­joint method we em­ploy [1] al­lows for op­ti­miza­tion of the lat­tice with a min­i­mum com­pu­ta­tional ef­fort in­clud­ing self-fields. The pre­sent model is based on a mo­ment de­scrip­tion of the beam. How­ever, the gen­er­al­iza­tion to a par­ti­cle de­scrip­tion will be pre­sented. The op­ti­mized de­signs pre­sented here will be tested in ex­per­i­ments under con­struc­tion at the Uni­ver­sity of Mary­land.
[1] Optimization of Flat to Round Transformers with self-fields using adjoint techniques, L. Dovlatyan, B. Beaudoin, S. Bernal, I. Haber, D. Sutter and TMA, PhysRevAccelBeams.25.044002 (2022).
 
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA69  
About • Received ※ 03 August 2022 — Revised ※ 25 September 2022 — Accepted ※ 05 December 2022 — Issue date ※ 05 December 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUZE3 Optimizing the Discovery of Underlying Nonlinear Beam Dynamics 335
 
  • L.A. Pocher, T.M. Antonsen, L. Dovlatyan, I. Haber, P.G. O’Shea
    UMD, College Park, Maryland, USA
 
  Funding: Work supported by US DOE-HEP grants: DE-SC0010301 and DE-SC0022009
One of the DOE-HEP Grand Chal­lenges iden­ti­fied by Na­gait­sev et al. re­lates to the use of vir­tual par­ti­cle ac­cel­er­a­tors for beam pre­dic­tion and op­ti­miza­tion. Use­ful vir­tual ac­cel­er­a­tors rely on ef­fi­cient and ef­fec­tive method­olo­gies grounded in the­ory, sim­u­la­tion, and ex­per­i­ment. This paper uses an al­go­rithm called Sparse Iden­ti­fi­ca­tion of Non­lin­ear Dy­nam­i­cal sys­tems (SINDy), which has not pre­vi­ously been ap­plied to beam physics. We be­lieve the SINDy method­ol­ogy promises to sim­plify the op­ti­miza­tion of ac­cel­er­a­tor de­sign and com­mis­sion­ing, par­tic­u­larly where space charge is im­por­tant. We show how SINDy can be used to dis­cover and iden­tify the un­der­ly­ing dif­fer­en­tial equa­tion sys­tem gov­ern­ing the beam mo­ment evo­lu­tion. We com­pare dis­cov­ered dif­fer­en­tial equa­tions to the­o­ret­i­cal pre­dic­tions and re­sults from the PIC code WARP mod­el­ing. We then in­te­grate the dis­cov­ered dif­fer­en­tial sys­tem for­ward in time and com­pare the re­sults to data an­a­lyzed in prior work using a Ma­chine Learn­ing par­a­digm called Reser­voir Com­put­ing. Fi­nally, we pro­pose ex­tend­ing our method­ol­ogy, SINDy for Vir­tual Ac­cel­er­a­tors (SINDyVA), to the broader com­mu­nity’s com­pu­ta­tional and real ex­per­i­ments.
 
slides icon Slides TUZE3 [3.141 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-TUZE3  
About • Received ※ 08 August 2022 — Accepted ※ 10 August 2022 — Issue date ※ 22 August 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)