Author: Bruker, M.W.
Paper Title Page
WEZD6 Manufacturing the Harmonic Kicker Cavity Prototype for the Electron-Ion Collider 601
 
  • S.A. Overstreet, M.W. Bruker, G.A. Grose, J. Guo, J. Henry, G.-T. Park, R.A. Rimmer, H. Wang, R.S. Williams
    JLab, Newport News, Virginia, USA
 
  Funding: This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under contract DE-AC05-06OR23177
High-bunch-frequency beam-separation schemes, such as the injection scheme proposed for the Rapid Cycling Synchrotron at the Electron-Ion Collider, demand rise and fall times an order of magnitude below what can realistically be accomplished with a stripline kicker. Nanosecond-time-scale kick waveforms can instead be obtained by Fourier synthesis in a harmonically resonant quarter-wave radio-frequency cavity which is optimized for high shunt impedance. Originally developed for the Jefferson Lab Electron-Ion Collider (JLEIC) Circulator Cooler Ring, a hypothetical 11-pass ring driven by an energy-recovery linac at Jefferson Lab, our high-power prototype of such a harmonic kicker cavity, which operates at five modes at the same time, will demonstrate the viability of this concept with a beam test at Jefferson Lab. As the geometry of the cavity, tight mechanical tolerances, and number of ports complicate the design and manufacturing process, special care must be given to the order of the manufacturing steps. We present our experiences with the manufacturability of the present design, lessons learned, and first RF test results from the prototype.
 
slides icon Slides WEZD6 [12.312 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-WEZD6  
About • Received ※ 04 August 2022 — Revised ※ 05 August 2022 — Accepted ※ 18 August 2022 — Issue date ※ 31 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPA12 Operational Experience of the New Booster Cryomodule at the Upgraded Injector Test Facility 640
 
  • M.W. Bruker, R. Bachimanchi, J.M. Grames, M.D. McCaughan, J. Musson, P.D. Owen, T.E. Plawski, M. Poelker, T. Powers, H. Wang, Y.W. Wang
    JLab, Newport News, Virginia, USA
 
  Funding: This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under contract DE-AC05-06OR23177.
Since the early 1990s, the injector of the CEBAF accelerator at Jefferson Lab has relied on a normal-conducting RF graded-beta capture section to boost the kinetic energy of the electron beam from 100 / 130 keV to 600 keV for subsequent acceleration using a cryomodule housing two superconducting 5-cell cavities similar to those used throughout the accelerator. To simplify the injector design and improve the beam quality, the normal-conducting RF capture section and the cryomodule will be replaced with a new single booster cryomodule employing a superconducting, β = 0.6, 2-cell-cavity capture section and a single, β = 0.97, 7-cell cavity. The Upgraded Injector Test Facility at Jefferson Lab is currently hosting the new cryomodule to evaluate its performance with beam before installation at CEBAF. While demonstrating satisfactory performance of the booster and good agreement with simulations, our beam test results also speak to limitations of accelerator operations in a noisy, thermally unregulated environment.
 
poster icon Poster WEPA12 [3.726 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-WEPA12  
About • Received ※ 03 August 2022 — Revised ※ 07 August 2022 — Accepted ※ 11 August 2022 — Issue date ※ 06 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPA13 New Results at JLab Describing Operating Lifetime of GaAs Photo-guns 644
 
  • M.W. Bruker, J.M. Grames, C. Hernandez-Garcia, M. Poelker, S. Zhang
    JLab, Newport News, Virginia, USA
  • V.M. Lizárraga-Rubio, C.A. Valerio-Lizárraga
    ECFM-UAS, Culiacan, Sinaloa, Mexico
  • J.T. Yoskowitz
    ODU, Norfolk, Virginia, USA
 
  Funding: This work is supported by U.S. Department of Energy under DE-AC05-06OR23177 and by Consejo Nacional de Ciencia y Tecnología and the Universidad Autonoma de Sinaloa under PRO_A1_022.
Polarized electrons from GaAs photocathodes have been key to some of the highest-impact results of the Jefferson Lab science program over the past 30 years. During this time, various studies have given insight into improving the operational lifetime of these photocathodes in DC high-voltage photo-guns while using lasers with spatial Gaussian profiles of typically 0.5 mm to 1 mm FWHM, cathode voltages of 100 kV to 130 kV, and a wide range of beam currents up to multiple mA. In this contribution, we show recent experimental data from a 100 kV to 180 kV setup and describe our progress at predicting the lifetime based on the calculable dynamics of ionized gas molecules inside the gun. These new experimental studies at Jefferson Lab are specifically aimed at exploring the ion damage of higher-voltage guns being built for injectors.
 
poster icon Poster WEPA13 [1.644 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-WEPA13  
About • Received ※ 02 August 2022 — Revised ※ 07 August 2022 — Accepted ※ 11 August 2022 — Issue date ※ 01 October 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPA24 pyJSPEC - A Python Module for IBS and Electron Cooling Simulation 672
 
  • H. Zhang, S.V. Benson, M.W. Bruker, Y. Zhang
    JLab, Newport News, Virginia, USA
 
  Funding: This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under contract DE-AC05-06OR23177.
The intrabeam scattering is an important collective effect that can deteriorate the property of a high-intensity beam and electron cooling is a method to mitigate the IBS effect. JSPEC (JLab Simulation Package on Electron Cooling) is an open-source C++ program developed at Jefferson Lab, which simulates the evolution of the ion beam under the IBS and/or the electron cooling effect. The Python wrapper of the C++ code, pyJSPEC, for Python 3.x environment has been recently developed and released. It allows the users to run JSPEC simulations in a Python environment. It also makes it possible for JSPEC to collaborate with other accelerator and beam modeling programs as well as plentiful python tools in data visualization, optimization, machine learning, etc. In this paper, we will introduce the features of pyJSPEC and demonstrate how to use it with sample codes and numerical results.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-WEPA24  
About • Received ※ 02 August 2022 — Revised ※ 08 August 2022 — Accepted ※ 11 August 2022 — Issue date ※ 26 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FRXD6 Bunch Length Measurements at the CEBAF Injector at 130 kV 917
 
  • S. Pokharel, G.A. Krafft
    ODU, Norfolk, Virginia, USA
  • M.W. Bruker, J.M. Grames, A.S. Hofler, R. Kazimi, G.A. Krafft, S. Zhang
    JLab, Newport News, Virginia, USA
 
  Funding: This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under contract DE-AC05-06OR23177.
In this work, we investigated the evolution in bunch length of beams through the CEBAF injector for low to high charge per bunch. Using the General Particle Tracer (GPT), we have simulated the beams through the beamline of the CEBAF injector and analyzed the beam to get the bunch lengths at the location of chopper. We performed these simulations with the existing injector using a 130 kV gun voltage. Finally, we describe measurements to validate these simulations. The measurements have been done using chopper scanning technique for two injector laser drive frequency modes: one with 500 MHz, and another with 250 MHz.
 
slides icon Slides FRXD6 [0.800 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-FRXD6  
About • Received ※ 02 August 2022 — Revised ※ 07 August 2022 — Accepted ※ 10 August 2022 — Issue date ※ 01 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)