Paper | Title | Page |
---|---|---|
MOYE6 | Spin-Polarized Electron Photoemission and Detection Studies | 26 |
|
||
Funding: Brookhaven National Laboratory and the Department of Energy of United States under contract No. DE-SC0012704 Also, the Center for Bright Beams, NSF award PHY-1549132. The experimental investigation of new photocathode ma- terials is time-consuming, expensive, and difficult to accom- plish. Computational modelling offers fast and inexpensive ways to explore new materials, and operating conditions, that could potentially enhance the efficiency of polarized electron beam photocathodes. We report on Monte-Carlo simulation of electron spin polarization (ESP) and quantum efficiency (QE) of bulk GaAs at 2, 77, and 300 K using the data obtained from Density Functional Theory (DFT) cal- culations at the corresponding temperatures. The simulated results of ESP and QE were compared with reported exper- imental measurements, and showed good agreement at 77 and 300 K. |
||
Slides MOYE6 [6.235 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOYE6 | |
About • | Received ※ 03 August 2022 — Revised ※ 07 August 2022 — Accepted ※ 11 August 2022 — Issue date ※ 04 September 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPA65 | On-Chip Photonics Integrated Photocathodes | 773 |
|
||
Funding: This work is supported by the NSF Center for Bright Beams under award PHY-1549132, and by the Department of Energy, Office of Science under awards DE-SC0021092, and DE-SC0021213. Photonics integrated photocathodes can result in advanced electron sources for various accelerator applications. In such photocathodes, light can be directed using waveguides and other photonic components on the substrate underneath a photoemissive film to generate electron emission from specific locations at sub-micron scales and at specific times at 100-femtosecond scales along with triggering novel photoemission mechanisms resulting in brighter electron beams and enabling unprecedented spatio-temporal shaping of the emitted electrons. In this work we have demonstrated photoemission confined in the transverse direction using a nanofabricated Si3N4 waveguide underneath a 40-nm thick cesiated GaAs photoemissive film, thus demonstrating a proof of principle feasibility of such photonics integrated photocathodes. This work paves the way to integrate the advances in the field of photonics and nanofabrication with photocathodes to develop better electron sources. |
||
Poster WEPA65 [0.642 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-WEPA65 | |
About • | Received ※ 26 July 2022 — Revised ※ 06 August 2022 — Accepted ※ 07 August 2022 — Issue date ※ 10 August 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |