Author: Gorelov, D.V.
Paper Title Page
TUPA42 LANSCE Modernization Project at LANL 443
 
  • D.V. Gorelov, J. Barraza, D.A.D. Dimitrov, I. Draganić, E. Henestroza, S.S. Kurennoy
    LANL, Los Alamos, New Mexico, USA
 
  In the framework of LANSCE Accelerator Modernization Project preliminary research, during evaluation of critical technology elements it was found that the proposed RFQ design had not yet been demonstrated experimentally worldwide. Such an RFQ should combine the ability of traditional light ion RFQs (i.e., [1]) and the flexibility of acceleration of pre-bunched beams, like RFQs for heavy ions [2]. The proposed RFQ should be able to accelerate H+ and H beams with 35-mA beam current from 100 keV to 3 MeV and at the same time preserve the prescribed macro-bunch beam time structure required by experiments. New algorithms for RFQ geometry generation have been proposed, and optimization algorithms are being developed at LANL. LAMP demonstration plans also include development of a new set of electrodes for the existing RFQ at our Test Stand that will allow us to demonstrate the critical technology ahead of time in a laboratory experimental setup with low duty factor and low energy.
[1] S. Henderson et al., Nucl. Instrum. Methods Phys. Res., Sect. A, v. 763, pp. 610-673 (2014).
[2] H. Ren et al., J. Phys. Conf. Ser., v. 1067, 052010 (2018).
 
poster icon Poster TUPA42 [0.635 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-TUPA42  
About • Received ※ 04 August 2022 — Revised ※ 05 August 2022 — Accepted ※ 09 August 2022 — Issue date ※ 18 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPA57 Electromagnetic and Beam Dynamics Modeling of the LANSCE Coupled-Cavity Linac 472
 
  • S.S. Kurennoy, Y.K. Batygin, D.V. Gorelov
    LANL, Los Alamos, New Mexico, USA
 
  The 800-MeV proton linac at LANSCE consists of a drift-tube linac, which brings the beam to 100 MeV, followed by a coupled-cavity linac (CCL) consisting of 44 modules. Each CCL module contains multiple tanks, and it is fed by a single 805-MHz klystron. CCL tanks are multi-cell blocks of identical re-entrant side-coupled cavities, which are followed by drifts with magnetic quadrupole doublets. Bridge couplers - special cavities displaced from the beam axis - electromagnetically couple CCL tanks over such drifts. We have developed 3D CST models of CCL tanks. Their electromagnetic analysis is performed using MicroWave Studio. Beam dynamics is modeled with Particle Studio for bunch trains with realistic beam distributions using the CST calculated RF fields and quadrupole magnetic fields to determine the output beam parameters. Beam dynamics results are crosschecked with other multi-particle codes.  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-TUPA57  
About • Received ※ 15 July 2022 — Revised ※ 01 August 2022 — Accepted ※ 08 August 2022 — Issue date ※ 19 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPA75 High Gradient Testing Results of the Benchmark a/λ=0.105 Cavity at CERF-NM 505
 
  • M.R.A. Zuboraj, D.V. Gorelov, T.W. Hall, M.E. Middendorf, D. Rai, E.I. Simakov, T. Tajima
    LANL, Los Alamos, New Mexico, USA
 
  Funding: This work was supported by Los Alamos National Laboratory’s Laboratory Directed Research and Development (LDRD) Program.
This presentation will report initial results of high gradient testing of two C-band accelerating cavities fabricated at Los Alamos National Laboratory (LANL). At LANL, we commissioned a C-band Engineering Research Facility of New Mexico (CERF-NM) which has unique capability of conditioning and testing accelerating cavities for operation at surface electric fields at the excess of 300 MV/m, powered by a 50 MW, 5.712 GHz Canon klystron. Recently, we fabricated and tested two benchmark copper cavities at CERF-NM. These cavities establish a benchmark for high gradient performance at C-band and the same geometry will be used to provide direct comparison between high gradient performance of cavities fabricated of different alloys and by different fabrication methods. The cavities consist of three cells with one high gradient central cell and two coupling cells on the sides. The ratio of the radius of the coupling iris to the wavelength is a/λ=0.105. This poster will report high gradient test results such as breakdown rates as function of peak surface electric and magnetic fields and pulse heating.
 
poster icon Poster TUPA75 [0.890 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-TUPA75  
About • Received ※ 05 August 2022 — Revised ※ 11 August 2022 — Accepted ※ 12 August 2022 — Issue date ※ 01 October 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THYD3 Update on the Status of C-Band Research and Facilities at LANL 855
 
  • E.I. Simakov, A.M. Alexander, D.V. Gorelov, T.W. Hall, M.E. Middendorf, D. Rai, T. Tajima, M.R.A. Zuboraj
    LANL, Los Alamos, New Mexico, USA
 
  Funding: Los Alamos National Laboratory LDRD Program
We will report on the status of two C-band test facilities at Los Alamos National Laboratory (LANL): C-band Engineering Research Facility in New Mexico (CERF-NM), and Cathodes and Rf Interactions in Extremes (CARIE). Modern applications such as X-ray sources require accelerators with optimized cost of construction and operation, naturally calling for high-gradient acceleration. At LANL we commissioned a high gradient test stand powered by a 50 MW, 5.712 GHz Canon klystron. CERF-NM is the first high gradient C-band test facility in the United States. It was fully commissioned in 2021. In the last year, multiple C-band high gradient cavities and components were tested at CERF-NM. Currently we work to implement several updates to the test stand including the ability to remotedly operate at high gradient for the round-the-clock high gradient conditioning. Adding capability to operate at cryogenic temperatures is considered. The construction of CARIE will begin in October of 2022. CARIE will house a cryo-cooled copper RF photoinjector with a high quantum-efficiency cathode and a high gradient accelerator section.
 
slides icon Slides THYD3 [3.331 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-THYD3  
About • Received ※ 31 July 2022 — Revised ※ 08 August 2022 — Accepted ※ 12 August 2022 — Issue date ※ 04 October 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)