Author: Gu, X.
Paper Title Page
MOPA89 RHIC Electron Beam Cooling Analysis Using Principle Component and Autoencoder Analysis 260
 
  • A.D. Tran, Y. Hao
    FRIB, East Lansing, Michigan, USA
  • X. Gu
    BNL, Upton, New York, USA
 
  Funding: Work supported by the US Department of Energy under contract No. DE-AC02-98CH10886.
Principal component analysis and autoencoder analysis were used to analyze the experimental data of RHIC operation with low energy RHIC electron cooling (LEReC). This is unsupervised learning which includes electron beam settings and observable during operation. Both analyses were used to gauge the dimensional reducibility of the data and to understand which features are important to beam cooling.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA89  
About • Received ※ 02 August 2022 — Revised ※ 05 August 2022 — Accepted ※ 06 August 2022 — Issue date ※ 12 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUZD5 Experience and Challenges with Electron Cooling of Colliding Ion Beams in RHIC 325
 
  • A.V. Fedotov, X. Gu, D. Kayran, J. Kewisch, S. Seletskiy
    BNL, Upton, New York, USA
 
  Funding: Work supported by the U.S. Department of Energy.
Electron cooling of ion beams employing rf-accelerated electron bunches was successfully used for the RHIC physics program in 2020 and 2021 and was essential in achieving the required luminosity goals. This presentation will summarize experience and challenges with electron cooling of colliding ion beams in RHIC. We also outline ongoing studies using rf-based electron cooler LEReC.
 
slides icon Slides TUZD5 [1.373 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-TUZD5  
About • Received ※ 02 August 2022 — Accepted ※ 04 August 2022 — Issue date ※ 14 September 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)