Paper | Title | Page |
---|---|---|
MOPA72 | Preliminary Tests and Beam Dynamics Simulations of a Straight-Merger Beamline | 206 |
|
||
Funding: NSF award PHY-1549132 to Cornell University and NIU, U.S. DOE contract DE-AC02-06CH11357 with ANL and DE-AC05-06OR23177 with JLAB. Beamlines capable of merging beams with different energies are critical to many applications related to advanced accelerator concepts and energy-recovery linacs (ERLs). In an ERL, a low-energy "fresh" bright bunch is generally injected into a superconducting linac for acceleration using the fields established by a decelerated "spent" beam traveling on the same axis. A straight-merger system composed of a selecting cavity with a superimposed dipole magnet was proposed and recently test at AWA. This paper reports on the experimental results obtained so far along with detailed beam dynamics investigations of the merger concept and its ability to conserve the beam brightness associated with the fresh bunch. |
||
Poster MOPA72 [1.659 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA72 | |
About • | Received ※ 11 August 2022 — Accepted ※ 13 August 2022 — Issue date ※ 02 October 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEXD5 | Benchmarking Simulation for AWA Drive Linac and Emittance Exchange Beamline Using OPAL, GPT, and Impact-T | 552 |
|
||
At the Argonne Wakefield Accelerator (AWA) facility, particle-tracking simulations have been critical to guiding beam-dynamic experiments, e.g., for various beam manipulations using an available emittance-exchange beamline (EEX). The unique beamline available at AWA provide a test case to perform in-depth comparison between different particle-tracking programs including collective effects such as space-charge force and coherent synchrotron radiation. In this study, using AWA electron injector and emittance exchange beamline, we compare the simulations results obtained by GPT, OPAL, and Impact-T beam-dynamics programs. We will specifically report on convergence test as a function of parameters that controls the underlying algorithms. | ||
Slides WEXD5 [1.847 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-WEXD5 | |
About • | Received ※ 03 August 2022 — Revised ※ 06 August 2022 — Accepted ※ 11 August 2022 — Issue date ※ 22 August 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |