Author: Kim, S.Y.
Paper Title Page
MOZE3 Emittance Measurements and Simulations from an X-Band Short-Pulse Ultra-High Gradient Photoinjector 45
 
  • G. Chen, D.S. Doran, C.-J. Jing, S.Y. Kim, W. Liu, W. Liu, P. Piot, J.G. Power, C. Whiteford, E.E. Wisniewski
    ANL, Lemont, Illinois, USA
  • C.-J. Jing, E.W. Knight, S.V. Kuzikov
    Euclid TechLabs, Solon, Ohio, USA
  • C.-J. Jing
    Euclid Beamlabs, Bolingbrook, USA
  • X. Lu, P. Piot, W.H. Tan
    Northern Illinois University, DeKalb, Illinois, USA
 
  Funding: This work is supported by the U.S. DOE, under award No. DE-SC0018656 to NIU, DOE SBIR grant No. DE-SC0018709 to Euclid Techlabs LLC, and contract No. DE-AC02-06CH11357 with ANL.
A pro­gram is under way at the Ar­gonne Wake­field Ac­cel­er­a­tor fa­cil­ity, in col­lab­o­ra­tion with the Eu­clid Tech­labs and North­ern Illi­nois Uni­ver­sity (NIU), to de­velop a GeV/m scale pho­to­cath­ode gun, with the ul­ti­mate goal of demon­strat­ing a high-bright­ness pho­toin­jec­tor beam­line. The novel X-band pho­toe­mis­sion gun (Xgun) is pow­ered by high-power, short RF pulses, 9-ns (FWHM), which, in turn, are gen­er­ated by the AWA drive beam. In a pre­vi­ous proof-of-prin­ci­ple ex­per­i­ment, an un­prece­dented 400~MV/m gra­di­ent on the pho­to­cath­ode sur­face* was demon­strated. In the cur­rent ver­sion of the ex­per­i­ment, we added a linac to the beam­line to in­crease the total en­ergy and gain ex­pe­ri­ence tun­ing the beam­line. In this paper, we re­port on the very first re­sult of emit­tance mea­sure­ment as well as sev­eral other beam pa­ra­me­ters. This pre­lim­i­nary in­ves­ti­ga­tion has iden­ti­fied sev­eral fac­tors to be im­proved on in order to achieve one of the ul­ti­mate goals; low emit­tance.
* W. H. Tan et al., "Demonstration of sub-GV/m Accelerating Field in a Photoemission Electron Gun Powered by Nanosecond X-Band Radiofrequency Pulses", 2022. arXiv:2203.11598v1
 
slides icon Slides MOZE3 [5.565 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOZE3  
About • Received ※ 03 August 2022 — Revised ※ 05 August 2022 — Accepted ※ 11 August 2022 — Issue date ※ 14 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPA50 Integrated Photonics Structure Cathodes for Longitudinally Shaped Bunch Trains 160
 
  • S.J. Coleman, D.T. Abell, C.C. Hall
    RadiaSoft LLC, Boulder, Colorado, USA
  • R. Kapadia
    University of Southern California, Los Angeles, California, USA
  • S.S. Karkare
    Arizona State University, Tempe, USA
  • S.Y. Kim, P. Piot, J.F. Power
    ANL, Lemont, Illinois, USA
 
  Funding: This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of High Energy Physics under Award Number DOE DE-SC0021681
Com­pact, high-gra­di­ent struc­ture wake­field ac­cel­er­a­tors can op­er­ate at im­proved ef­fi­ciency using shaped elec­tron beams, such as a high trans­former ratio beam shape, to drive the wakes. These shapes have gen­er­ally come from a pho­to­cath­ode gun fol­lowed by a trans­verse mask to im­print a de­sired shape on the trans­verse dis­tri­b­u­tion, and then an emit­tance ex­changer (EEX) to con­vert that trans­verse shape into a lon­gi­tu­di­nal dis­tri­b­u­tion. This process dis­cards some large frac­tion of the beam, lim­it­ing wall-plug ef­fi­ciency as well as leav­ing a solid ob­ject in the path of the beam. In this paper, we pre­sent a pro­posed method of using in­te­grated pho­ton­ics struc­tures to con­trol the emis­sion pat­tern on the cath­ode sur­face. This trans­verse pat­tern is then con­verted into a lon­gi­tu­di­nal pat­tern at the end of an EEX. This re­moves the need for the mask, pre­serv­ing the total charge pro­duced at the cath­ode sur­face. We pre­sent sim­u­la­tions of an ex­per­i­men­tal set-up to demon­strate this con­cept at the Ar­gonne Wake­field Ac­cel­er­a­tor.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA50  
About • Received ※ 03 August 2022 — Revised ※ 05 August 2022 — Accepted ※ 26 August 2022 — Issue date ※ 03 October 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPA28 Update on the Development of a Low-Cost Button BPM Signal Detector at AWA 409
 
  • W. Liu, G. Chen, D.S. Doran, S.Y. Kim, X. Lu, P. Piot, J.G. Power, C. Whiteford, E.E. Wisniewski
    ANL, Lemont, Illinois, USA
  • E.E. Wisniewski
    IIT, Chicago, Illinois, USA
 
  Funding: Work supported by the US Department of Energy, Office of Science.
A sin­gle-pulse, high dy­namic range, cost-ef­fec­tive BPM sig­nal de­tec­tor has been on the most wanted list of the Ar­gonne Wake­field Ac­cel­er­a­tor (AWA) Test Fa­cil­ity for many years. The unique ca­pa­bil­i­ties of the AWA beam­line re­quire BPM in­stru­men­ta­tion with an un­prece­dented dy­namic range, thus a cost-ef­fec­tive so­lu­tion could be chal­leng­ing to de­sign and pro­to­type. With the help of a bet­ter cir­cuit model for a but­ton BPM sig­nal source, we are able to do the cir­cuit sim­u­la­tions with more re­al­is­tic input sig­nals and make pre­dic­tions much closer to re­al­i­ties. Our most re­cent de­sign and pro­to­type re­sults are shared in this paper.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-TUPA28  
About • Received ※ 01 August 2022 — Revised ※ 08 August 2022 — Accepted ※ 11 August 2022 — Issue date ※ 09 October 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPA82 Transverse Stability in an Alternating Symmetry Planar Dielectric Wakefield Structure 519
 
  • W.J. Lynn, G. Andonian, N. Majernik, S.M. OTool, J.B. Rosenzweig
    UCLA, Los Angeles, California, USA
  • D.S. Doran, S.Y. Kim, J.F. Power, E.E. Wisniewski
    ANL, Lemont, Illinois, USA
  • P. Piot
    Northern Illinois University, DeKalb, Illinois, USA
 
  Funding: DE-SC0017648 - AWA.
Di­elec­tric Wake­field Ac­cel­er­a­tion (DWA) is a promis­ing tech­nique for re­al­iz­ing the next gen­er­a­tion of lin­ear col­lid­ers. It pro­vides ac­cess to sig­nif­i­cantly higher ac­cel­er­at­ing gra­di­ents than tra­di­tional ra­dio-fre­quency cav­i­ties. One im­ped­i­ment to re­al­iz­ing a DWA-pow­ered ac­cel­er­a­tor is the issue of the trans­verse sta­bil­ity of the beams within the di­elec­tric struc­ture due to short-range wake­fields. These short-range wake­fields have a ten­dency to in­duce a phe­nom­e­non known as sin­gle-bunch beam breakup, which acts as its name im­plies and de­stroys the rel­e­vant beam. We at­tempt to solve this issue by lever­ag­ing the quadru­pole mode ex­cited in a pla­nar di­elec­tric struc­ture and then al­ter­nat­ing the ori­en­ta­tion of said struc­ture to turn an un­sta­ble sys­tem into a sta­ble one. We ex­am­ine this issue com­pu­ta­tion­ally to de­ter­mine the lim­its of sta­bil­ity and based on those sim­u­la­tions de­scribe a fu­ture ex­per­i­men­tal re­al­iza­tion of this strat­egy.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-TUPA82  
About • Received ※ 02 August 2022 — Revised ※ 11 August 2022 — Accepted ※ 12 August 2022 — Issue date ※ 30 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPA85 First Results from a Multileaf Collimator and Emittance Exchange Beamline 531
 
  • N. Majernik, G. Andonian, C.D. Lorch, W.J. Lynn, J.B. Rosenzweig
    UCLA, Los Angeles, California, USA
  • D.S. Doran, S.Y. Kim, P. Piot, J.G. Power, C. Whiteford, E.E. Wisniewski
    ANL, Lemont, Illinois, USA
 
  Funding: Department of Energy DE-SC0017648 and National Science Foundation PHY-1549132.
By shap­ing the trans­verse pro­file of a par­ti­cle beam prior to an emit­tance ex­change (EEX) beam­line, drive and wit­ness beams with vari­able cur­rent pro­files and bunch spac­ing can be pro­duced. Presently at AWA, this trans­verse shap­ing is ac­com­plished with in­di­vid­u­ally laser-cut tung­sten masks, mak­ing the re­fine­ment of beam pro­files a slow process. In con­trast, a mul­ti­leaf col­li­ma­tor (MLC) is a de­vice that can se­lec­tively mask the pro­file of a beam using many in­de­pen­dently ac­tu­ated leaves. Since an MLC per­mits real-time ad­just­ment of the beam shape, its use as a beam mask would per­mit much faster op­ti­miza­tion in a man­ner highly syn­er­gis­tic with ma­chine learn­ing. Beam dy­nam­ics sim­u­la­tions have shown that such an ap­proach is func­tion­ally equiv­a­lent to that of­fered by the laser cut masks. In this work, the con­struc­tion and first re­sults from a 40-leaf, UHV com­pat­i­ble MLC are dis­cussed.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-TUPA85  
About • Received ※ 16 July 2022 — Revised ※ 02 August 2022 — Accepted ※ 11 August 2022 — Issue date ※ 12 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEXD5 Benchmarking Simulation for AWA Drive Linac and Emittance Exchange Beamline Using OPAL, GPT, and Impact-T 552
 
  • S.Y. Kim, G. Chen, D.S. Doran, G. Ha, W. Liu, J.G. Power, E.E. Wisniewski
    ANL, Lemont, Illinois, USA
  • E.A. Frame, P. Piot
    Northern Illinois University, DeKalb, Illinois, USA
 
  At the Ar­gonne Wake­field Ac­cel­er­a­tor (AWA) fa­cil­ity, par­ti­cle-track­ing sim­u­la­tions have been crit­i­cal to guid­ing beam-dy­namic ex­per­i­ments, e.g., for var­i­ous beam ma­nip­u­la­tions using an avail­able emit­tance-ex­change beam­line (EEX). The unique beam­line avail­able at AWA pro­vide a test case to per­form in-depth com­par­i­son be­tween dif­fer­ent par­ti­cle-track­ing pro­grams in­clud­ing col­lec­tive ef­fects such as space-charge force and co­her­ent syn­chro­tron ra­di­a­tion. In this study, using AWA elec­tron in­jec­tor and emit­tance ex­change beam­line, we com­pare the sim­u­la­tions re­sults ob­tained by GPT, OPAL, and Im­pact-T beam-dy­nam­ics pro­grams. We will specif­i­cally re­port on con­ver­gence test as a func­tion of pa­ra­me­ters that con­trols the un­der­ly­ing al­go­rithms.  
slides icon Slides WEXD5 [1.847 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-WEXD5  
About • Received ※ 03 August 2022 — Revised ※ 06 August 2022 — Accepted ※ 11 August 2022 — Issue date ※ 22 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)