Author: Knight, E.W.
Paper Title Page
MOZE3 Emittance Measurements and Simulations from an X-Band Short-Pulse Ultra-High Gradient Photoinjector 45
 
  • G. Chen, D.S. Doran, C.-J. Jing, S.Y. Kim, W. Liu, W. Liu, P. Piot, J.G. Power, C. Whiteford, E.E. Wisniewski
    ANL, Lemont, Illinois, USA
  • C.-J. Jing, E.W. Knight, S.V. Kuzikov
    Euclid TechLabs, Solon, Ohio, USA
  • C.-J. Jing
    Euclid Beamlabs, Bolingbrook, USA
  • X. Lu, P. Piot, W.H. Tan
    Northern Illinois University, DeKalb, Illinois, USA
 
  Funding: This work is supported by the U.S. DOE, under award No. DE-SC0018656 to NIU, DOE SBIR grant No. DE-SC0018709 to Euclid Techlabs LLC, and contract No. DE-AC02-06CH11357 with ANL.
A pro­gram is under way at the Ar­gonne Wake­field Ac­cel­er­a­tor fa­cil­ity, in col­lab­o­ra­tion with the Eu­clid Tech­labs and North­ern Illi­nois Uni­ver­sity (NIU), to de­velop a GeV/m scale pho­to­cath­ode gun, with the ul­ti­mate goal of demon­strat­ing a high-bright­ness pho­toin­jec­tor beam­line. The novel X-band pho­toe­mis­sion gun (Xgun) is pow­ered by high-power, short RF pulses, 9-ns (FWHM), which, in turn, are gen­er­ated by the AWA drive beam. In a pre­vi­ous proof-of-prin­ci­ple ex­per­i­ment, an un­prece­dented 400~MV/m gra­di­ent on the pho­to­cath­ode sur­face* was demon­strated. In the cur­rent ver­sion of the ex­per­i­ment, we added a linac to the beam­line to in­crease the total en­ergy and gain ex­pe­ri­ence tun­ing the beam­line. In this paper, we re­port on the very first re­sult of emit­tance mea­sure­ment as well as sev­eral other beam pa­ra­me­ters. This pre­lim­i­nary in­ves­ti­ga­tion has iden­ti­fied sev­eral fac­tors to be im­proved on in order to achieve one of the ul­ti­mate goals; low emit­tance.
* W. H. Tan et al., "Demonstration of sub-GV/m Accelerating Field in a Photoemission Electron Gun Powered by Nanosecond X-Band Radiofrequency Pulses", 2022. arXiv:2203.11598v1
 
slides icon Slides MOZE3 [5.565 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOZE3  
About • Received ※ 03 August 2022 — Revised ※ 05 August 2022 — Accepted ※ 11 August 2022 — Issue date ※ 14 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THYE4 Development of an Ultra-Low Vibration Cryostat Based on a Closed-Cycle Cryocooler 874
 
  • R.W. Roca
    Illinois Institute of Technology, Chicago, Illinois, USA
  • E.W. Knight, R.A. Kostin, Y. Zhao
    Euclid TechLabs, Solon, Ohio, USA
 
  Low tem­per­a­ture and low vi­bra­tion cryostats are use­ful in a va­ri­ety of ap­pli­ca­tions such as x-ray dif­frac­tion, quan­tum com­put­ing, x-ray mono­chro­ma­tors and cryo-TEMs. In this pro­ject, we ex­plore an ul­tra-low vi­bra­tion cryo­stat with the cool­ing pro­vided by a closed cycle cry­ocooler. Closed-cy­cle cry­ocool­ers in­evitably in­tro­duce vi­bra­tions into the sys­tem, and in this pro­ject, flex­i­ble cop­per braid­ing was used to de­cou­ple vi­bra­tions and pro­vide cool­ing at the same time. In order to de­velop the cryo­stat, ca­pac­ity map of a two stage Sum­it­omo cry­ocooler was mea­sured as well as vi­bra­tion trans­mis­sion through dif­fer­ent cop­per braids using an IR in­ter­fer­om­e­ter. This paper cov­ers the ca­pac­ity map and vi­bra­tion mea­sure­ments in the first pro­to­type.  
slides icon Slides THYE4 [4.989 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-THYE4  
About • Received ※ 16 July 2022 — Revised ※ 10 August 2022 — Accepted ※ 20 August 2022 — Issue date ※ 12 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THZE3 An Electrodeless Diamond Beam Monitor 904
 
  • S.V. Kuzikov, P.V. Avrakhov, C.-J. Jing, E.W. Knight
    Euclid TechLabs, Solon, Ohio, USA
  • D.S. Doran, C.-J. Jing, J.G. Power, E.E. Wisniewski
    ANL, Lemont, Illinois, USA
  • C.-J. Jing
    Euclid Beamlabs, Bolingbrook, USA
 
  Funding: The work was supported by DoE SBIR grant #DE-SC0019642.
Being a wide-band semi­con­duc­tor, di­a­mond can be used to mea­sure the flux of pass­ing par­ti­cles based on a par­ti­cle-in­duced con­duc­tiv­ity ef­fect. We re­cently demon­strated a di­a­mond elec­trode­less elec­tron beam halo mon­i­tor. That mon­i­tor was based on a thin piece of di­a­mond (blade) placed in an open high-qual­ity mi­crowave res­onator. The blade par­tially in­ter­cepted the beam. By mea­sur­ing the change in RF prop­er­ties of the res­onator, one could infer the beam pa­ra­me­ters. At Ar­gonne Wake­field Ac­cel­er­a­tor we have tested 1D and 2D mon­i­tors. To en­hance the sen­si­tiv­ity of our di­a­mond sen­sor, we pro­posed ap­ply­ing a bias volt­age to the di­a­mond which can sus­tain the avalanche of free car­ri­ers. In ex­per­i­ment car­ried out with 120 kV, ~1 µA beam we showed that the re­sponse sig­nal for the avalanche mon­i­tor bi­ased with up to 5 kV volt­age can be up to 100 times larger in com­par­i­son with the sig­nal of the same non-bi­ased de­vice.
 
slides icon Slides THZE3 [4.257 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-THZE3  
About • Received ※ 20 July 2022 — Revised ※ 28 July 2022 — Accepted ※ 06 August 2022 — Issue date ※ 08 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)