Author: Kurennoy, S.S.
Paper Title Page
TUPA42 LANSCE Modernization Project at LANL 443
 
  • D.V. Gorelov, J. Barraza, D.A.D. Dimitrov, I. Draganić, E. Henestroza, S.S. Kurennoy
    LANL, Los Alamos, New Mexico, USA
 
  In the framework of LANSCE Accelerator Modernization Project preliminary research, during evaluation of critical technology elements it was found that the proposed RFQ design had not yet been demonstrated experimentally worldwide. Such an RFQ should combine the ability of traditional light ion RFQs (i.e., [1]) and the flexibility of acceleration of pre-bunched beams, like RFQs for heavy ions [2]. The proposed RFQ should be able to accelerate H+ and H beams with 35-mA beam current from 100 keV to 3 MeV and at the same time preserve the prescribed macro-bunch beam time structure required by experiments. New algorithms for RFQ geometry generation have been proposed, and optimization algorithms are being developed at LANL. LAMP demonstration plans also include development of a new set of electrodes for the existing RFQ at our Test Stand that will allow us to demonstrate the critical technology ahead of time in a laboratory experimental setup with low duty factor and low energy.
[1] S. Henderson et al., Nucl. Instrum. Methods Phys. Res., Sect. A, v. 763, pp. 610-673 (2014).
[2] H. Ren et al., J. Phys. Conf. Ser., v. 1067, 052010 (2018).
 
poster icon Poster TUPA42 [0.635 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-TUPA42  
About • Received ※ 04 August 2022 — Revised ※ 05 August 2022 — Accepted ※ 09 August 2022 — Issue date ※ 18 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPA48 Effect of Lattice Misalignments on Beam Dynamics in LANSCE Linear Accelerator 455
 
  • Y.K. Batygin, S.S. Kurennoy
    LANL, Los Alamos, New Mexico, USA
 
  Funding: Work supported by US DOE under contract 89233218CNA000001
Accelerator channel misalignments can significantly affect beam parameters in long linear accelerators. Measurements of misalignments of the LANSCE linac lattice elements was performed by the Mechanical Design Engineering Group of the Los Alamos Accelerator Operations and Technology Division. In order to determine effect of misalignment on beam parameters in LANSCE linac, the start-to-end simulations of LANSCE accelerator were performed using Beampath and CST codes including measured displacements of quadrupoles and accelerating tanks. Simulations were done for both H+ and H beams with various beam flavors. Effect of misalignments was compared with those due to beam space charge and distortion of RF field along the channel. Paper presents results of simulation and comparison with experimental data of beam emittance growth along the machine.
 
poster icon Poster TUPA48 [1.547 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-TUPA48  
About • Received ※ 23 July 2022 — Revised ※ 28 July 2022 — Accepted ※ 04 August 2022 — Issue date ※ 14 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPA56 Beam Coupling Impedances of Asymmetric Components of the Scorpius Induction Linac 469
 
  • S.S. Kurennoy
    LANL, Los Alamos, New Mexico, USA
 
  The transverse beam coupling impedance of induction linacs must be minimized to avoid beam breakdown instability. The vacuum chamber of the Scorpius linac contains complicated asymmetric elements. We present calculations of the transverse impedance for three asymmetric discontinuities: (1) a pumping section between accelerating cells, which contains vacuum plenum, pumping grid, and bellows; (2) a fast flapper valve; and (3) a debris blocker at the end of the linac. The dipole transverse impedance is calculated with CST Studio using both wakefield solver and eigen solver.  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-TUPA56  
About • Received ※ 01 August 2022 — Revised ※ 07 August 2022 — Accepted ※ 08 August 2022 — Issue date ※ 06 October 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPA57 Electromagnetic and Beam Dynamics Modeling of the LANSCE Coupled-Cavity Linac 472
 
  • S.S. Kurennoy, Y.K. Batygin, D.V. Gorelov
    LANL, Los Alamos, New Mexico, USA
 
  The 800-MeV proton linac at LANSCE consists of a drift-tube linac, which brings the beam to 100 MeV, followed by a coupled-cavity linac (CCL) consisting of 44 modules. Each CCL module contains multiple tanks, and it is fed by a single 805-MHz klystron. CCL tanks are multi-cell blocks of identical re-entrant side-coupled cavities, which are followed by drifts with magnetic quadrupole doublets. Bridge couplers - special cavities displaced from the beam axis - electromagnetically couple CCL tanks over such drifts. We have developed 3D CST models of CCL tanks. Their electromagnetic analysis is performed using MicroWave Studio. Beam dynamics is modeled with Particle Studio for bunch trains with realistic beam distributions using the CST calculated RF fields and quadrupole magnetic fields to determine the output beam parameters. Beam dynamics results are crosschecked with other multi-particle codes.  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-TUPA57  
About • Received ※ 15 July 2022 — Revised ※ 01 August 2022 — Accepted ※ 08 August 2022 — Issue date ※ 19 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THZD3 Design of 3-GeV High-Gradient Booster for Upgraded Proton Radiography at LANSCE 891
 
  • Y.K. Batygin, S.S. Kurennoy
    LANL, Los Alamos, New Mexico, USA
 
  Funding: Work supported by US DOE under contract 89233218CNA000001
Increasing the proton beam energy from the present 800 MeV to 3 GeV will improve the resolution of the Proton Radiography Facility at the Los Alamos Neutron Science Center (LANSCE) by a factor of 10. It will bridge the gap between the existing facilities, which covers large length scales for thick objects, and future high-brightness light sources, which can provide the finest resolution. Proton radiography requires a sequence of short beam pulses (~20 x 80 ns) separated by intervals of variable duration, from about 300 ns to 1 to 2 μs. To achieve the required parameters, the high gradient 3-GeV booster is proposed. The booster consists of 1.4 GHz buncher, two accelerators based on 2.8 GHz and 5.6 GHz high-gradient accelerating structures and 1.4 GHz debuncher. Utilization of buncher-accelerator-debuncher scheme allows us to combine high-gradient acceleration with significant reduction of beam momentum spread. Paper discusses details of linac design and expected beam parameters.
 
slides icon Slides THZD3 [2.348 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-THZD3  
About • Received ※ 28 July 2022 — Revised ※ 06 August 2022 — Accepted ※ 08 August 2022 — Issue date ※ 04 October 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THZD4 Accelerating Structures for High-Gradient Proton Radiography Booster at LANSCE 894
 
  • S.S. Kurennoy, Y.K. Batygin, E.R. Olivas
    LANL, Los Alamos, New Mexico, USA
 
  Increasing energy of proton beam at LANSCE from 800 MeV to 3 GeV improves radiography resolution ~10 times. We proposed accomplishing such an energy boost with a compact cost-effective linac based on normal conducting high-gradient (HG) RF accelerating structures. Such an unusual proton linac is feasible for proton radiography (pRad), which operates with short RF pulses. For a compact pRad booster at LANSCE, we have developed a multi-stage design: a short L-band section to capture and compress the 800-MeV proton beam followed by the main HG linac based on S- and C-band cavities, and finally, by an L-band de-buncher [1]. Here we present details of development, including EM and thermal-stress analysis, of proton HG structures with distributed RF coupling for the pRad booster. A simple two-cell structure with distributed coupling is being fabricated and will be tested at the LANL C-band RF Test Stand.
[1] S.S. Kurennoy, Y.K. Batygin. IPAC21, MOPAB210.
 
slides icon Slides THZD4 [1.591 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-THZD4  
About • Received ※ 01 August 2022 — Revised ※ 10 August 2022 — Accepted ※ 11 August 2022 — Issue date ※ 26 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)