Author: Kuzikov, S.V.
Paper Title Page
MOZE3 Emittance Measurements and Simulations from an X-Band Short-Pulse Ultra-High Gradient Photoinjector 45
 
  • G. Chen, D.S. Doran, C.-J. Jing, S.Y. Kim, W. Liu, W. Liu, P. Piot, J.G. Power, C. Whiteford, E.E. Wisniewski
    ANL, Lemont, Illinois, USA
  • C.-J. Jing, E.W. Knight, S.V. Kuzikov
    Euclid TechLabs, Solon, Ohio, USA
  • C.-J. Jing
    Euclid Beamlabs, Bolingbrook, USA
  • X. Lu, P. Piot, W.H. Tan
    Northern Illinois University, DeKalb, Illinois, USA
 
  Funding: This work is supported by the U.S. DOE, under award No. DE-SC0018656 to NIU, DOE SBIR grant No. DE-SC0018709 to Euclid Techlabs LLC, and contract No. DE-AC02-06CH11357 with ANL.
A pro­gram is under way at the Ar­gonne Wake­field Ac­cel­er­a­tor fa­cil­ity, in col­lab­o­ra­tion with the Eu­clid Tech­labs and North­ern Illi­nois Uni­ver­sity (NIU), to de­velop a GeV/m scale pho­to­cath­ode gun, with the ul­ti­mate goal of demon­strat­ing a high-bright­ness pho­toin­jec­tor beam­line. The novel X-band pho­toe­mis­sion gun (Xgun) is pow­ered by high-power, short RF pulses, 9-ns (FWHM), which, in turn, are gen­er­ated by the AWA drive beam. In a pre­vi­ous proof-of-prin­ci­ple ex­per­i­ment, an un­prece­dented 400~MV/m gra­di­ent on the pho­to­cath­ode sur­face* was demon­strated. In the cur­rent ver­sion of the ex­per­i­ment, we added a linac to the beam­line to in­crease the total en­ergy and gain ex­pe­ri­ence tun­ing the beam­line. In this paper, we re­port on the very first re­sult of emit­tance mea­sure­ment as well as sev­eral other beam pa­ra­me­ters. This pre­lim­i­nary in­ves­ti­ga­tion has iden­ti­fied sev­eral fac­tors to be im­proved on in order to achieve one of the ul­ti­mate goals; low emit­tance.
* W. H. Tan et al., "Demonstration of sub-GV/m Accelerating Field in a Photoemission Electron Gun Powered by Nanosecond X-Band Radiofrequency Pulses", 2022. arXiv:2203.11598v1
 
slides icon Slides MOZE3 [5.565 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOZE3  
About • Received ※ 03 August 2022 — Revised ※ 05 August 2022 — Accepted ※ 11 August 2022 — Issue date ※ 14 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPA53 An Open Radiofrequency Accelerating Structure 753
 
  • S.V. Kuzikov
    Euclid TechLabs, Solon, Ohio, USA
 
  We re­port an open multi-cell ac­cel­er­at­ing struc­ture. Being in­te­grated with a set of open-end wave­guides, this struc­ture can sup­press high-or­der modes (HOMs). All the ac­cel­er­at­ing cells are con­nected at the side to rec­tan­gu­lar cross-sec­tion wave­guides which strongly cou­pled with free space or ab­sorbers. Due to the anti-phased con­tri­bu­tion of the cell pairs, the op­er­at­ing mode does not leak out, and has as high-qual­ity fac­tor as for a closed ac­cel­er­at­ing struc­ture. How­ever, the com­pen­sa­tion does not occur for spu­ri­ous high-or­der modes. This op­er­at­ing prin­ci­ple also al­lows for strong cou­pling be­tween the cells of the struc­ture, which is why high ho­mo­gene­ity of the ac­cel­er­at­ing fields can be pro­vided along the struc­ture. We dis­cuss the ob­tained sim­u­la­tion re­sults and pos­si­ble ap­pli­ca­tions. Its in­clude a nor­mal con­duct­ing high-shunt im­ped­ance ac­cel­er­a­tor, a tun­able pho­toin­jec­tor’s RF gun, and a high-cur­rent, high-se­lec­tive SRF ac­cel­er­a­tors.  
poster icon Poster WEPA53 [1.817 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-WEPA53  
About • Received ※ 01 August 2022 — Revised ※ 08 August 2022 — Accepted ※ 12 August 2022 — Issue date ※ 16 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THXD6 A Quasi-Optical Beam Position Monitor 846
 
  • S.V. Kuzikov
    Euclid TechLabs, Solon, Ohio, USA
 
  There is a strong de­mand for non-de­struc­tive elec­tron Beam Po­si­tion Mon­i­tors (BPMs) for non-per­tur­ba­tive di­ag­nos­tics of the elec­tron beam po­si­tion. Chal­lenges are re­lated to the short­ness of the elec­tron beam and the noisy cham­ber en­vi­ron­ment that are typ­i­cal for mod­ern RF-dri­ven and plasma-dri­ven ac­cel­er­a­tors. We pro­pose using a pair of iden­ti­cal high-qual­ity quasi-op­ti­cal res­onators at­tached to op­po­site sides of the beam pipe. The res­onators can in­tro­duce Pho­tonic Band Gap (BPM) struc­tures. These open res­onators sus­tain very low num­bers of high-qual­ity modes. We in­tend to op­er­ate at the low­est mode among the oth­ers that are ca­pa­ble of being ex­cited by the bunches. The men­tioned mode has a cou­pling co­ef­fi­cient with the beam that de­pends on the dis­tance be­tween the bunch and the cou­pling hole. The lower this dis­tance, the higher the cou­pling. There­fore, com­par­ing the pick-up sig­nals of both res­onators with an os­cil­lo­scope, we can de­ter­mine the beam po­si­tion.  
slides icon Slides THXD6 [3.745 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-THXD6  
About • Received ※ 25 July 2022 — Accepted ※ 06 August 2022 — Issue date ※ 27 September 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THZE3 An Electrodeless Diamond Beam Monitor 904
 
  • S.V. Kuzikov, P.V. Avrakhov, C.-J. Jing, E.W. Knight
    Euclid TechLabs, Solon, Ohio, USA
  • D.S. Doran, C.-J. Jing, J.G. Power, E.E. Wisniewski
    ANL, Lemont, Illinois, USA
  • C.-J. Jing
    Euclid Beamlabs, Bolingbrook, USA
 
  Funding: The work was supported by DoE SBIR grant #DE-SC0019642.
Being a wide-band semi­con­duc­tor, di­a­mond can be used to mea­sure the flux of pass­ing par­ti­cles based on a par­ti­cle-in­duced con­duc­tiv­ity ef­fect. We re­cently demon­strated a di­a­mond elec­trode­less elec­tron beam halo mon­i­tor. That mon­i­tor was based on a thin piece of di­a­mond (blade) placed in an open high-qual­ity mi­crowave res­onator. The blade par­tially in­ter­cepted the beam. By mea­sur­ing the change in RF prop­er­ties of the res­onator, one could infer the beam pa­ra­me­ters. At Ar­gonne Wake­field Ac­cel­er­a­tor we have tested 1D and 2D mon­i­tors. To en­hance the sen­si­tiv­ity of our di­a­mond sen­sor, we pro­posed ap­ply­ing a bias volt­age to the di­a­mond which can sus­tain the avalanche of free car­ri­ers. In ex­per­i­ment car­ried out with 120 kV, ~1 µA beam we showed that the re­sponse sig­nal for the avalanche mon­i­tor bi­ased with up to 5 kV volt­age can be up to 100 times larger in com­par­i­son with the sig­nal of the same non-bi­ased de­vice.
 
slides icon Slides THZE3 [4.257 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-THZE3  
About • Received ※ 20 July 2022 — Revised ※ 28 July 2022 — Accepted ※ 06 August 2022 — Issue date ※ 08 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)