Author: Kuzikov, S.V.
Paper Title Page
MOZE3 Emittance Measurements and Simulations from an X-Band Short-Pulse Ultra-High Gradient Photoinjector 45
 
  • G. Chen, D.S. Doran, C.-J. Jing, S.Y. Kim, W. Liu, W. Liu, P. Piot, J.G. Power, C. Whiteford, E.E. Wisniewski
    ANL, Lemont, Illinois, USA
  • C.-J. Jing, E.W. Knight, S.V. Kuzikov
    Euclid TechLabs, Solon, Ohio, USA
  • C.-J. Jing
    Euclid Beamlabs, Bolingbrook, USA
  • X. Lu, P. Piot, W.H. Tan
    Northern Illinois University, DeKalb, Illinois, USA
 
  Funding: This work is supported by the U.S. DOE, under award No. DE-SC0018656 to NIU, DOE SBIR grant No. DE-SC0018709 to Euclid Techlabs LLC, and contract No. DE-AC02-06CH11357 with ANL.
A program is under way at the Argonne Wakefield Accelerator facility, in collaboration with the Euclid Techlabs and Northern Illinois University (NIU), to develop a GeV/m scale photocathode gun, with the ultimate goal of demonstrating a high-brightness photoinjector beamline. The novel X-band photoemission gun (Xgun) is powered by high-power, short RF pulses, 9-ns (FWHM), which, in turn, are generated by the AWA drive beam. In a previous proof-of-principle experiment, an unprecedented 400~MV/m gradient on the photocathode surface* was demonstrated. In the current version of the experiment, we added a linac to the beamline to increase the total energy and gain experience tuning the beamline. In this paper, we report on the very first result of emittance measurement as well as several other beam parameters. This preliminary investigation has identified several factors to be improved on in order to achieve one of the ultimate goals; low emittance.
* W. H. Tan et al., "Demonstration of sub-GV/m Accelerating Field in a Photoemission Electron Gun Powered by Nanosecond X-Band Radiofrequency Pulses", 2022. arXiv:2203.11598v1
 
slides icon Slides MOZE3 [5.565 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOZE3  
About • Received ※ 03 August 2022 — Revised ※ 05 August 2022 — Accepted ※ 11 August 2022 — Issue date ※ 14 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPA53 An Open Radiofrequency Accelerating Structure 753
 
  • S.V. Kuzikov
    Euclid TechLabs, Solon, Ohio, USA
 
  We report an open multi-cell accelerating structure. Being integrated with a set of open-end waveguides, this structure can suppress high-order modes (HOMs). All the accelerating cells are connected at the side to rectangular cross-section waveguides which strongly coupled with free space or absorbers. Due to the anti-phased contribution of the cell pairs, the operating mode does not leak out, and has as high-quality factor as for a closed accelerating structure. However, the compensation does not occur for spurious high-order modes. This operating principle also allows for strong coupling between the cells of the structure, which is why high homogeneity of the accelerating fields can be provided along the structure. We discuss the obtained simulation results and possible applications. Its include a normal conducting high-shunt impedance accelerator, a tunable photoinjector’s RF gun, and a high-current, high-selective SRF accelerators.  
poster icon Poster WEPA53 [1.817 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-WEPA53  
About • Received ※ 01 August 2022 — Revised ※ 08 August 2022 — Accepted ※ 12 August 2022 — Issue date ※ 16 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THXD6 A Quasi-Optical Beam Position Monitor 846
 
  • S.V. Kuzikov
    Euclid TechLabs, Solon, Ohio, USA
 
  There is a strong demand for non-destructive electron Beam Position Monitors (BPMs) for non-perturbative diagnostics of the electron beam position. Challenges are related to the shortness of the electron beam and the noisy chamber environment that are typical for modern RF-driven and plasma-driven accelerators. We propose using a pair of identical high-quality quasi-optical resonators attached to opposite sides of the beam pipe. The resonators can introduce Photonic Band Gap (BPM) structures. These open resonators sustain very low numbers of high-quality modes. We intend to operate at the lowest mode among the others that are capable of being excited by the bunches. The mentioned mode has a coupling coefficient with the beam that depends on the distance between the bunch and the coupling hole. The lower this distance, the higher the coupling. Therefore, comparing the pick-up signals of both resonators with an oscilloscope, we can determine the beam position.  
slides icon Slides THXD6 [3.745 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-THXD6  
About • Received ※ 25 July 2022 — Accepted ※ 06 August 2022 — Issue date ※ 27 September 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THZE3 An Electrodeless Diamond Beam Monitor 904
 
  • S.V. Kuzikov, P.V. Avrakhov, C.-J. Jing, E.W. Knight
    Euclid TechLabs, Solon, Ohio, USA
  • D.S. Doran, C.-J. Jing, J.G. Power, E.E. Wisniewski
    ANL, Lemont, Illinois, USA
  • C.-J. Jing
    Euclid Beamlabs, Bolingbrook, USA
 
  Funding: The work was supported by DoE SBIR grant #DE-SC0019642.
Being a wide-band semiconductor, diamond can be used to measure the flux of passing particles based on a particle-induced conductivity effect. We recently demonstrated a diamond electrodeless electron beam halo monitor. That monitor was based on a thin piece of diamond (blade) placed in an open high-quality microwave resonator. The blade partially intercepted the beam. By measuring the change in RF properties of the resonator, one could infer the beam parameters. At Argonne Wakefield Accelerator we have tested 1D and 2D monitors. To enhance the sensitivity of our diamond sensor, we proposed applying a bias voltage to the diamond which can sustain the avalanche of free carriers. In experiment carried out with 120 kV, ~1 µA beam we showed that the response signal for the avalanche monitor biased with up to 5 kV voltage can be up to 100 times larger in comparison with the signal of the same non-biased device.
 
slides icon Slides THZE3 [4.257 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-THZE3  
About • Received ※ 20 July 2022 — Revised ※ 28 July 2022 — Accepted ※ 06 August 2022 — Issue date ※ 08 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)