Author: Leung, B.
Paper Title Page
MOPA74 Design of a W-Band Corrugated Waveguide for Structure Wakefield Acceleration 210
 
  • B. Leung, X. Lu, C.L. Phillips, P. Piot
    Northern Illinois University, DeKalb, Illinois, USA
  • D.S. Doran, X. Lu, P. Piot, J.G. Power
    ANL, Lemont, Illinois, USA
 
  Current research on structure wakefield acceleration aims to develop radio-frequency structures that can produce high gradients, with work in the sub-terahertz regime being particularly interesting because of the potential to create more compact and economical accelerators. Metallic corrugated waveguides at sub-terahertz frequencies are one such structure. We have designed a W-band corrugated waveguide for a collinear wakefield acceleration experiment at the Argonne Wakefield Accelerator (AWA). Using the CST Studio Suite, we have optimized the structure for the maximum achievable gradient in the wakefield from a nominal AWA electron bunch at 65 MeV. Simulation results from different solvers of CST were benchmarked with each other, with analytical models, and with another simulation code, ECHO. We are investigating the mechanical design, suitable fabrication technologies, and the possibility to apply advanced bunch shaping techniques to improve the structure performance.  
poster icon Poster MOPA74 [1.518 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA74  
About • Received ※ 30 July 2022 — Revised ※ 03 August 2022 — Accepted ※ 07 August 2022 — Issue date ※ 26 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPA76 Wakefield Modeling in Sub-THz Dielectric-Lined Waveguides 218
 
  • C.L. Phillips, B. Leung, X. Lu, P. Piot
    Northern Illinois University, DeKalb, Illinois, USA
 
  Dielectric-lined waveguides have been extensively studied to potentially support high-gradient acceleration in beam-driven dielectric wakefield acceleration (DWFA) and for beam manipulations. In this paper, we investigate the wakefield generated by a relativistic bunch passing through a dielectric waveguide with different transverse sections. We specifically consider the case of a structure consisting of two dielectric slabs, along with rectangular and square structures. Numerical simulations performed with the fine-difference time-domain of the WarpX program reveal some interesting features of the transverse wake and a possible experiment at the Argonne Wakefield Accelerator (AWA) is proposed.  
poster icon Poster MOPA76 [1.294 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA76  
About • Received ※ 12 August 2022 — Accepted ※ 13 August 2022 — Issue date ※ 12 September 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)