Paper | Title | Page |
---|---|---|
MOPA82 | Space Charge Driven Third Order Resonance at AGS Injection | 236 |
|
||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy Resonance line crossings at significant space charge tune shifts can exhibit various phenomena due to periodic resonance crossing from synchrotron motion* and manifests as halo generation and bunch shortening along with the more mundane emittance growth and beam loss. An injection experiment is conducted at the AGS using the fast wall current monitor and electron collecting Ionization Profile Monitor (eIPM) to probe third order resonances to better characterize the resonance crossing over a 4 ms time scale. This experiment shows some agreement with previous experiments, save for lack of bunch shortening, possibly due to relative resonance strength. * G. Franchetti et al. PRSTAB 13, 114203. 2010 |
||
Poster MOPA82 [1.924 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA82 | |
About • | Received ※ 02 August 2022 — Revised ※ 09 August 2022 — Accepted ※ 19 August 2022 — Issue date ※ 24 August 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPA85 | Localized Beam Induced Heating Analysis of the EIC Vacuum Chamber Components | 833 |
|
||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy The Electron-Ion Collider (EIC), to be built at Brookhaven National Laboratory (BNL), is designed to provide a high electron-proton luminosity of 1034 cm-2 s-1. One of the challenging tasks for the Electron Storage Ring (ESR) is to operate at an average beam current of 2.5 A within 1160 bunches with a ~ 7 mm bunch length. The Hadron Storage Ring (HSR) will accumulate an average current of 0.69 A within 290 bunches with a 60 mm bunch length. Both rings require the impedance budget simulations. The intense e-beam in the ESR can lead to the overheating of vacuum chamber components due to localized metallic losses. This paper focuses on the beam-induced heating analysis of the ESR vacuum components including bellows, gate-valve, and BPM. To perform thermal analysis, the resistive loss on individual components is calculated with CST and then fed to ANSYS to determine the temperature distribution on the vacuum components. Preliminary results suggest that active water cooling will be required for most of the ESR vacuum components. Similar approach is applied to the HSR vacuum components. The thermal analysis of the HSR stripline injection kicker is presented. |
||
DOI • | reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-WEPA85 | |
About • | Received ※ 03 August 2022 — Revised ※ 08 August 2022 — Accepted ※ 10 August 2022 — Issue date ※ 10 September 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |