Paper | Title | Page |
---|---|---|
TUPA72 | Comparison Study on First Bunch Compressor Schemes by Conventional and Double C-Chicane for MaRIE XFEL | 496 |
|
||
Funding: Laboratory Directed Research and Development program of Los Alamos National Laboratory, project number 20200287ER. We report our comparison study on the first stage electron bunch compression schemes at 750 MeV using a conventional and a double C-chicane for the X-ray free electron laser (XFEL) under development for the Matter-Radiation Interactions in Extremes (MaRIE) initiative at Los Alamos National Laboratory. Compared to the performance of the conventional C-chicane bunch compressor, the double C-chicane scheme exhibits the capability of utilizing the transverse momentum shift induced by the coherent synchrotron radiation in the second C-chicane to compensate that generated in the first C-chicane, resulting in a compressed electron bunch with minimized transverse momentum shift along the beam. It is also found that the double C-chicane scheme can be designed to significantly better preserve the beam emittance in the course of the bunch compression. This is particularly beneficial for the MaRIE XFEL whose lasing performance critically depends on the preservation of the ultralow beam emittance. |
||
Poster TUPA72 [1.339 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-TUPA72 | |
About • | Received ※ 01 August 2022 — Accepted ※ 06 August 2022 — Issue date ※ 15 August 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPA73 | Design and Low Power Test of an Electron Bunching Enhancer Using Electrostatic Potential Depression | 499 |
|
||
Funding: This project was supported by the U.S. Department of Energy Office of Science through the Accelerator Stewardship Program. We present our experimental design and low power test results of a structure for the proof-of-principle demonstration of fast increase of the first harmonic current content in a bunched electron beam, using the technique of electrostatic potential depression (EPD). A primarily bunched electron beam from an inductive output tube (IOT) at 710 MHz first enters an idler cavity, where the longitudinal slope of the beam energy distribution is reversed. The beam then transits through an EPD section implemented by a short beam pipe with a negative high voltage bias, inside which the rate of increase of the first harmonic current is significantly enhanced. An output cavity measures the harmonic current developed inside the beam downstream of the EPD section. Low power test results of the idler and the output cavities agree with the theoretical design. |
||
Poster TUPA73 [1.307 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-TUPA73 | |
About • | Received ※ 29 July 2022 — Accepted ※ 03 August 2022 — Issue date ※ 09 August 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPA74 | Numerical Calculations of Wave Generation from a Bunched Electron Beam in Space | 502 |
|
||
Funding: This project was supported by the Laboratory Directed Research and Development program of Los Alamos National Laboratory. We present our numerical approach and preliminary results of the calculations of whistler and X-mode wave generation by a bunched electron beam in space. The artificial generation of whistler and X-mode plasma waves in space is among the candidate techniques to accomplish the radiation belt remediation (RBR), in an effort to precipitate energetic electrons towards the atmosphere to reduce their threat to low-Earth orbit satellites. Free-space propagation of an electron pulse in a constant background magnetic field was simulated with the CST particle-in-cell (PIC) solver, with the temporal evolution of the beam recorded. The SpectralPlasmaSolver (SPS) was then modified to use the recorded electron pulse propagation to calculate the real-time plasma waves generated by the beam. SPS simulation results of the wave generation for the upcoming Beam-PIE experiment as well as an ideal bunched electron beam are shown. |
||
Poster TUPA74 [0.963 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-TUPA74 | |
About • | Received ※ 18 July 2022 — Revised ※ 02 August 2022 — Accepted ※ 07 August 2022 — Issue date ※ 08 August 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEZD4 |
Using Off-Axis Undulator Radiation as a Longitudinal Electron-Beam Diagnostic | |
|
||
Funding: This project was supported by funding from the Los Alamos National Laboratory Laboratory Research and Development program. A novel diagnostic has been developed that uses off-axis undulator radiation to characterize the longitudinal bunch profile of an electron beam. The diagnostic uses a small, ~0.1-m long undulator with mirrors that focus the undulator radiation onto an array of pyrometers. The mirrors both focus the radiation onto the pyrometer and remove the chirping effect that comes from the finite length of the undulator. Numerical and analytical models have been developed to calculate the radiation for a given bunch length, and a phase retrieval algorithm has been developed to extract the bunch profile from measured data. The diagnostic has been installed at the BELLA laser-plasma wakefield accelerator, and will be used to characterize the bunch length there. The concept and relevant results will be presented. |
||
Slides WEZD4 [3.577 MB] | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
FRXD4 | Suppressing the Microbunching Instability at ATF using Laser Assisted Bunch Compression | 914 |
|
||
Funding: This project was supported by funding from the Los Alamos National Laboratory Laboratory Research and Development program. The microbunching instability in linear accelerators can significantly increase the energy spread of an electron beam. The instability can be suppressed by artificially increasing the random energy spread of an electron beam, but this leads to unacceptably high energy spreads for future XFEL systems. One possibility of suppressing this instability is to use laser assisted bunch compression (LABC) instead of the second chicane in an XFEL system, thereby eliminating the cascaded chicane effect that magnifies the microbunching instability. An experiment is proposed at ATF to test this concept, and numerical simulations of the experiment are shown. |
||
Slides FRXD4 [4.629 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-FRXD4 | |
About • | Received ※ 03 August 2022 — Revised ※ 11 August 2022 — Accepted ※ 12 August 2022 — Issue date ※ 28 September 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |