Author: McGuckin, T.S.
Paper Title Page
WEPA29 Real-Time Cavity Fault Prediction in CEBAF Using Deep Learning 687
 
  • M. Rahman, K.M. Iftekharuddin
    ODU, Norfolk, Virginia, USA
  • A. Carpenter, T.S. McGuckin, C. Tennant, L.S. Vidyaratne
    JLab, Newport News, Virginia, USA
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177.
Data-dri­ven pre­dic­tion of fu­ture faults is a major re­search area for many in­dus­trial ap­pli­ca­tions. In this work, we pre­sent a new pro­ce­dure of real-time fault pre­dic­tion for su­per­con­duct­ing ra­dio-fre­quency (SRF) cav­i­ties at the Con­tin­u­ous Elec­tron Beam Ac­cel­er­a­tor Fa­cil­ity (CEBAF) using deep learn­ing. CEBAF has been af­flicted by fre­quent down­time caused by SRF cav­ity faults. We per­form fault pre­dic­tion using pre-fault RF sig­nals from C100-type cry­omod­ules. Using the pre-fault sig­nal in­for­ma­tion, the new al­go­rithm pre­dicts the type of cav­ity fault be­fore the ac­tual onset. The early pre­dic­tion may en­able po­ten­tial mit­i­ga­tion strate­gies to pre­vent the fault. In our work, we apply a two-stage fault pre­dic­tion pipeline. In the first stage, a model dis­tin­guishes be­tween faulty and nor­mal sig­nals using a U-Net deep learn­ing ar­chi­tec­ture. In the sec­ond stage of the net­work, sig­nals flagged as faulty by the first model are clas­si­fied into one of seven fault types based on learned sig­na­tures in the data. Ini­tial re­sults show that our model can suc­cess­fully pre­dict most fault types 200 ms be­fore onset. We will dis­cuss rea­sons for poor model per­for­mance on spe­cific fault types.
 
poster icon Poster WEPA29 [1.339 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-WEPA29  
About • Received ※ 02 August 2022 — Revised ※ 07 August 2022 — Accepted ※ 11 August 2022 — Issue date ※ 17 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)