Paper | Title | Page |
---|---|---|
MOYD5 | Tolerances of Crab Dispersion at the Interaction Point in the Hadron Storage Ring of the Electron-Ion Collider | 12 |
|
||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy. The Electron Ion Collider (EIC) presently under construction at Brookhaven National Laboratory will collide polarized high energy electron beams with hadron beams with luminosity up to 1034 cm-2 s-1 in the center mass energy range of 20 to 140 GeV. Due to the detector solenoid in the interaction region, the design horizontal crabbing angle will be coupled to the vertical plane if uncompensated. In this article, we estimate the tolerance of crab dispersion at the interaction point in the EIC Hadron Storage Ring (HSR). Both strong-strong and weak-strong simulations are used. We found that there is a tight tolerance of vertical crabbing angle at the interaction point in the HSR. |
||
Slides MOYD5 [1.183 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOYD5 | |
About • | Received ※ 01 August 2022 — Accepted ※ 04 August 2022 — Issue date ※ 15 August 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPA75 | {6-D} Element-by-Element Particle Tracking with Crab Cavity Phase Noise and Weak-Strong Beam-Beam Interaction for the Hadron Storage Ring of the Electron-Ion Collider | 809 |
|
||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy. The Electron Ion Collider (EIC) presently under construction at Brookhaven National Laboratory will collide polarized high energy electron beams with hadron beams with luminosity up to 1034 cm-2 s-1 in the center mass energy range of 20 to 140 GeV. Crab cavities are used to compensate the geometric luminosity due to a large crossing angle in the EIC. However, it was found that the phase noise in crab cavities will generate a significant emittance growth for hadron beams and its tolerance from analytical calculation is very small for the Hadron Storage Ring (HSR) of the EIC. In this paper, we report on 6-D symplectic particle tracking to estimate the proton emittance growth rate, especially in the vertical plane, for the HSR with weak-strong beam-beam and other machine or lattice errors. |
||
DOI • | reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-WEPA75 | |
About • | Received ※ 01 August 2022 — Revised ※ 06 August 2022 — Accepted ※ 09 August 2022 — Issue date ※ 19 August 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |