Author: Rosenzweig, J.B.
Paper Title Page
TUPA80 Cyborg Beamline Development Updates 512
 
  • G.E. Lawler, A. Fukasawa, N. Majernik, J.R. Parsons, J.B. Rosenzweig, Y. Sakai
    UCLA, Los Angeles, California, USA
  • F. Bosco
    Sapienza University of Rome, Rome, Italy
  • Z. Li, S.G. Tantawi
    SLAC, Menlo Park, California, USA
  • B. Spataro
    LNF-INFN, Frascati, Italy
 
  Funding: This work was supported by the Center for Bright Beams, National Science Foundation Grant No. PHY-1549132 and DOE Contract DE-SC0020409.
Xray free elec­tron laser (XFEL) fa­cil­i­ties in their cur­rent form are large, costly to main­tain, and in­ac­ces­si­ble due to their min­i­mal sup­ply and high de­mand. It is then ad­van­ta­geous to con­sider minia­tur­iz­ing XFELs through a va­ri­ety of means. We hope to in­crease beam bright­ness from the pho­toin­jec­tor via high gra­di­ent op­er­a­tion (>120 MV/m) and cryo­genic tem­per­a­ture op­er­a­tion at the cath­ode (<77K). To this end we have de­signed and fab­ri­cated our new CrYo­genic Bright­ness-Op­ti­mized Ra­diofre­quency Gun (CY­B­GORG). The pho­to­gun is 0.5 cell so much less com­pli­cated than our even­tual 1.6 cell pho­toin­jec­tor. It will serve as a pro­to­type and test bed for cath­ode stud­ies in a new cryo­genic and very high gra­di­ent regime. We pre­sent here the fab­ri­cated struc­ture, progress to­wards com­mis­sion­ing, and beam­line sim­u­la­tions.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-TUPA80  
About • Received ※ 02 August 2022 — Accepted ※ 06 August 2022 — Issue date ※ 09 October 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPA81 Design of a High-Power RF Breakdown Test for a Cryocooled C-Band Copper Structure 516
 
  • G.E. Lawler, A. Fukasawa, J.R. Parsons, J.B. Rosenzweig
    UCLA, Los Angeles, California, USA
  • Z. Li, S.G. Tantawi
    SLAC, Menlo Park, California, USA
  • A. Mostacci
    Sapienza University of Rome, Rome, Italy
  • E.I. Simakov, T. Tajima
    LANL, Los Alamos, New Mexico, USA
  • B. Spataro
    LNF-INFN, Frascati, Italy
 
  Funding: This work was supported by the DOE Contract DE-SC0020409.
High-gra­di­ent RF struc­tures ca­pa­ble of main­tain­ing gra­di­ents in ex­cess of 250 MV/m are crit­i­cal in sev­eral con­cepts for fu­ture elec­tron ac­cel­er­a­tors. Con­cepts such as the ul­tra-com­pact free elec­tron laser (UC-XFEL) and the Cool Cop­per Col­lider (C3) plan to ob­tain these gra­di­ents through the cryo­genic op­er­a­tion (<77K) of nor­mal con­duct­ing cop­per cav­i­ties. Break­down rates, the most sig­nif­i­cant gra­di­ent lim­i­ta­tion, are sig­nif­i­cantly re­duced at these low tem­per­a­tures, but the pre­cise physics is com­plex and in­volves many in­ter­act­ing ef­fects. High-power RF break­down mea­sure­ments at cryo­genic tem­per­a­tures are needed at the less ex­plored C-band fre­quency (5.712 GHz), which is of great in­ter­est for the afore­men­tioned con­cepts. On be­half of a large col­lab­o­ra­tion of UCLA, SLAC, LANL, and INFN, the first C-band cryo­genic break­down mea­sure­ments will be made using a LANL RF test in­fra­struc­ture. The 2-cell geom­e­try de­signed for test­ing will be mod­i­fi­ca­tions of the dis­trib­uted cou­pled reen­trant de­sign used to ef­fi­ciently power the cells while stay­ing below the lim­it­ing val­ues of peak sur­face elec­tric and mag­netic fields.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-TUPA81  
About • Received ※ 29 July 2022 — Accepted ※ 02 August 2022 — Issue date ※ 08 August 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPA82 Transverse Stability in an Alternating Symmetry Planar Dielectric Wakefield Structure 519
 
  • W.J. Lynn, G. Andonian, N. Majernik, S.M. OTool, J.B. Rosenzweig
    UCLA, Los Angeles, California, USA
  • D.S. Doran, S.Y. Kim, J.F. Power, E.E. Wisniewski
    ANL, Lemont, Illinois, USA
  • P. Piot
    Northern Illinois University, DeKalb, Illinois, USA
 
  Funding: DE-SC0017648 - AWA.
Di­elec­tric Wake­field Ac­cel­er­a­tion (DWA) is a promis­ing tech­nique for re­al­iz­ing the next gen­er­a­tion of lin­ear col­lid­ers. It pro­vides ac­cess to sig­nif­i­cantly higher ac­cel­er­at­ing gra­di­ents than tra­di­tional ra­dio-fre­quency cav­i­ties. One im­ped­i­ment to re­al­iz­ing a DWA-pow­ered ac­cel­er­a­tor is the issue of the trans­verse sta­bil­ity of the beams within the di­elec­tric struc­ture due to short-range wake­fields. These short-range wake­fields have a ten­dency to in­duce a phe­nom­e­non known as sin­gle-bunch beam breakup, which acts as its name im­plies and de­stroys the rel­e­vant beam. We at­tempt to solve this issue by lever­ag­ing the quadru­pole mode ex­cited in a pla­nar di­elec­tric struc­ture and then al­ter­nat­ing the ori­en­ta­tion of said struc­ture to turn an un­sta­ble sys­tem into a sta­ble one. We ex­am­ine this issue com­pu­ta­tion­ally to de­ter­mine the lim­its of sta­bil­ity and based on those sim­u­la­tions de­scribe a fu­ture ex­per­i­men­tal re­al­iza­tion of this strat­egy.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-TUPA82  
About • Received ※ 02 August 2022 — Revised ※ 11 August 2022 — Accepted ※ 12 August 2022 — Issue date ※ 30 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPA83 Derivative-Free Optimization of Multipole Fits to Experimental Wakefield Data 523
 
  • N. Majernik, G. Andonian, W.J. Lynn, J.B. Rosenzweig
    UCLA, Los Angeles, California, USA
  • P. Piot, T. Xu
    Northern Illinois University, DeKalb, Illinois, USA
 
  Funding: Department of Energy DE-SC0017648.
A method to de­duce the trans­verse self-wake­fields act­ing on a beam, based only on screen im­ages, is in­tro­duced. By em­ploy­ing de­riv­a­tive-free op­ti­miza­tion, the rel­a­tively high-di­men­sional pa­ra­me­ter space can be ef­fi­ciently ex­plored to de­ter­mine the mul­ti­pole com­po­nents up to the de­sired order. This tech­nique com­ple­ments sim­u­la­tions, which are able to di­rectly infer the wake­field com­po­si­tion. It is ap­plied to rep­re­sen­ta­tive sim­u­la­tion re­sults as a bench­mark and also ap­plied to ex­per­i­men­tal data on skew wake ob­ser­va­tions from di­elec­tric slab struc­tures.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-TUPA83  
About • Received ※ 02 August 2022 — Revised ※ 21 August 2022 — Accepted ※ 26 August 2022 — Issue date ※ 11 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPA84 Reconstructing Beam Parameters from Betatron Radiation Through Machine Learning and Maximum Likelihood Estimation 527
 
  • S. Zhang, N. Majernik, B. Naranjo, J.B. Rosenzweig, M. Yadav
    UCLA, Los Angeles, California, USA
  • Ö. Apsimon, C.P. Welsch, M. Yadav
    The University of Liverpool, Liverpool, United Kingdom
 
  Funding: US Department of Energy, Division of High Energy Physics, under Contract No. DE-SC0009914.
The dense drive beam used in plasma wake­field ac­cel­er­a­tion gen­er­ates a lin­ear fo­cus­ing force that causes elec­trons in­side the wit­ness beam to un­dergo be­ta­tron os­cil­la­tions, giv­ing rise to be­ta­tron ra­di­a­tion. Be­cause in­for­ma­tion about the prop­er­ties of the beam is en­coded in the be­ta­tron ra­di­a­tion, mea­sure­ments of the ra­di­a­tion such as those recorded by the UCLA-built Comp­ton spec­trom­e­ter can be used to re­con­struct beam pa­ra­me­ters. Two pos­si­ble meth­ods of ex­tract­ing in­for­ma­tion about beam pa­ra­me­ters from mea­sure­ments of ra­di­a­tion are ma­chine learn­ing (ML), which is in­creas­ingly being im­ple­mented for dif­fer­ent fields of beam di­ag­nos­tics, and a sta­tis­ti­cal tech­nique known as max­i­mum like­li­hood es­ti­ma­tion (MLE). We as­sess the abil­ity of both ma­chine learn­ing and MLE meth­ods to ac­cu­rately ex­tract beam pa­ra­me­ters from mea­sure­ments of be­ta­tron ra­di­a­tion.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-TUPA84  
About • Received ※ 02 August 2022 — Revised ※ 07 August 2022 — Accepted ※ 10 August 2022 — Issue date ※ 05 October 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPA85 First Results from a Multileaf Collimator and Emittance Exchange Beamline 531
 
  • N. Majernik, G. Andonian, C.D. Lorch, W.J. Lynn, J.B. Rosenzweig
    UCLA, Los Angeles, California, USA
  • D.S. Doran, S.Y. Kim, P. Piot, J.G. Power, C. Whiteford, E.E. Wisniewski
    ANL, Lemont, Illinois, USA
 
  Funding: Department of Energy DE-SC0017648 and National Science Foundation PHY-1549132.
By shap­ing the trans­verse pro­file of a par­ti­cle beam prior to an emit­tance ex­change (EEX) beam­line, drive and wit­ness beams with vari­able cur­rent pro­files and bunch spac­ing can be pro­duced. Presently at AWA, this trans­verse shap­ing is ac­com­plished with in­di­vid­u­ally laser-cut tung­sten masks, mak­ing the re­fine­ment of beam pro­files a slow process. In con­trast, a mul­ti­leaf col­li­ma­tor (MLC) is a de­vice that can se­lec­tively mask the pro­file of a beam using many in­de­pen­dently ac­tu­ated leaves. Since an MLC per­mits real-time ad­just­ment of the beam shape, its use as a beam mask would per­mit much faster op­ti­miza­tion in a man­ner highly syn­er­gis­tic with ma­chine learn­ing. Beam dy­nam­ics sim­u­la­tions have shown that such an ap­proach is func­tion­ally equiv­a­lent to that of­fered by the laser cut masks. In this work, the con­struc­tion and first re­sults from a 40-leaf, UHV com­pat­i­ble MLC are dis­cussed.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-TUPA85  
About • Received ※ 16 July 2022 — Revised ※ 02 August 2022 — Accepted ※ 11 August 2022 — Issue date ※ 12 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPA86 Simulations of Nanoblade Cathode Emissions with Image Charge Trapping for Yield and Brightness Analyses 535
 
  • J.I. Mann, G.E. Lawler, J.B. Rosenzweig, B. Wang
    UCLA, Los Angeles, California, USA
  • T. Arias, J.K. Nangoi
    Cornell University, Ithaca, New York, USA
  • S.S. Karkare
    Arizona State University, Tempe, USA
 
  Funding: National Science Foundation Grant No. PHY-1549132
Laser-in­duced field emis­sion from nanos­truc­tures as a means to cre­ate high bright­ness elec­tron beams has been a con­tin­u­ally grow­ing topic of study. Ex­per­i­ments using nanoblade emit­ters have achieved peak fields up­wards of 40 GV/m ac­cord­ing to semi-clas­si­cal analy­ses, beg­ging fur­ther the­o­ret­i­cal in­ves­ti­ga­tion. A re­cent paper has pro­vided an­a­lyt­i­cal re­duc­tions of the com­mon semi-in­fi­nite Jel­lium sys­tem for pulsed in­ci­dent lasers. We uti­lize these re­sults to fur­ther un­der­stand the physics un­der­ly­ing elec­tron rescat­ter­ing-type emis­sions. We nu­mer­i­cally eval­u­ate this an­a­lyt­i­cal so­lu­tion to ef­fi­ciently pro­duce spec­tra and yield curves. The ef­fect of space-charge trap­ping at emis­sion may be sim­ply in­cluded by di­rectly mod­i­fy­ing these spec­tra. Ad­di­tion­ally, we use a self-con­sis­tent 1-D time-de­pen­dent Schrödinger equa­tion with an image charge po­ten­tial to study the same sys­tem as a more exact, but com­pu­ta­tion­ally costly, ap­proach. With these re­sults we may fi­nally in­ves­ti­gate the mean trans­verse en­ergy and beam bright­ness at the cath­ode in these ex­treme regimes.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-TUPA86  
About • Received ※ 02 August 2022 — Revised ※ 08 August 2022 — Accepted ※ 10 August 2022 — Issue date ※ 03 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPA87 Simulations for the Space Plasma Experiments at the SAMURAI Lab 539
 
  • P. Manwani, H.S. Ancelin, A. Fukasawa, G.E. Lawler, N. Majernik, B. Naranjo, J.B. Rosenzweig, Y. Sakai, O. Williams
    UCLA, Los Angeles, California, USA
  • G. Andonian
    RadiaBeam, Santa Monica, California, USA
 
  Funding: This work was performed with support of the US Department of Energy under Contract No. DE-SC0017648 and DESC0009914, and the DARPA GRIT Contract 20204571
Plasma wake­field ac­cel­er­a­tion using the elec­tron lin­ear ac­cel­er­a­tor test fa­cil­ity, SAMU­RAI, can be used to study the Jov­ian elec­tron spec­trum due to the high en­ergy spread of the beam after the plasma in­ter­ac­tion. The SAMU­RAI RF fa­cil­ity which is cur­rently being con­structed and com­mis­sioned at UCLA, is is ca­pa­ble of pro­duc­ing beams with 10 MeV en­ergy, 2 nC charge, and 200 fsec bunch lengths with a 4 um emit­tance. Par­ti­cle-in-cell (PIC) sim­u­la­tions are used to study the beam spec­trum that would be gen­er­ated from plasma in­ter­ac­tion. Ex­per­i­men­tal meth­ods and di­ag­nos­tics are dis­cussed in this paper.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-TUPA87  
About • Received ※ 04 August 2022 — Revised ※ 08 August 2022 — Accepted ※ 10 August 2022 — Issue date ※ 06 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THYD5 Development of Nanopatterned Strong Field Emission Cathodes 863
 
  • G.E. Lawler, N. Majernik, J.I. Mann, N. Montanez, J.B. Rosenzweig
    UCLA, Los Angeles, California, USA
 
  Funding: This work was supported by the Center for Bright Beams, National Science Foundation Grant No. PHY-1549132 and DOE HEP Grant DE-SC0009914.
In­creas­ing bright­ness at the cath­ode is highly de­sir­able for a di­verse suite of ap­pli­ca­tions in the elec­tron ac­cel­er­a­tor com­mu­nity. These ap­pli­ca­tions range from free elec­tron lasers to ul­tra­fast elec­tron dif­frac­tion. Many op­tions for higher bright­ness cath­odes are under in­ves­ti­ga­tion no­tably semi­con­duc­tor cath­odes. We con­sider here the pos­si­bil­ity for an al­ter­na­tive par­a­digm whereby the cath­ode sur­face is con­trolled to re­duce the ef­fec­tive area of il­lu­mi­na­tion and emis­sion. We fab­ri­cated nanoblade metal­lic coated cath­odes using com­mon nanofab­ri­ca­tion tech­niques. We have demon­strated that a beam can be suc­cess­fully ex­tracted with a low emit­tance and we have re­con­structed a por­tion of the en­ergy spec­trum. As a re­sult of our par­tic­u­lar geom­e­try, our beam pos­sesses a no­tably high as­pect ratio in its trans­verse plane. We can now begin to con­sider mod­i­fi­ca­tions for the pro­duc­tion of in­ten­tion­ally pat­terned beams such as higher as­pect ra­tios and hol­low beams.
 
slides icon Slides THYD5 [4.652 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-THYD5  
About • Received ※ 02 August 2022 — Accepted ※ 08 August 2022 — Issue date ※ 05 October 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)