Author: Sears, J.
Paper Title Page
TUPA15 Development of a CVD System for Next-Generation SRF Cavities 372
 
  • G. Gaitan, P. Bishop, A.T. Holic, G. Kulina, J. Sears, Z. Sun
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • M. Liepe
    Cornell University, Ithaca, New York, USA
  • B.W. Wendland
    University of Minnesota, Minnesota, USA
 
  Funding: This research is funded by the National Science Foundation under Grant No. PHY-1549132, the Center for Bright Beams.
Next-gen­er­a­tion, thin-film sur­faces em­ploy­ing Nb3Sn, NbN, NbTiN, and other com­pound su­per­con­duc­tors are des­tined to allow reach­ing su­pe­rior RF per­for­mance lev­els in SRF cav­i­ties. Op­ti­mized, ad­vanced de­po­si­tion processes are re­quired to en­able high-qual­ity films of such ma­te­ri­als on large and com­plex-shaped cav­i­ties. For this pur­pose, Cor­nell Uni­ver­sity is de­vel­op­ing a re­mote plasma-en­hanced chem­i­cal vapor de­po­si­tion (CVD) sys­tem that fa­cil­i­tates coat­ing on com­pli­cated geome­tries with a high de­po­si­tion rate. This sys­tem is based on a high-tem­per­a­ture tube fur­nace with a clean vac­uum and fur­nace load­ing sys­tem. The use of plasma along­side re­act­ing pre­cur­sors will sig­nif­i­cantly re­duce the re­quired pro­cess­ing tem­per­a­ture and pro­mote pre­cur­sor de­com­po­si­tion. The sys­tem can also be used for an­neal­ing cav­i­ties after the CVD process to im­prove the sur­face layer. The chlo­rine pre­cur­sors have the po­ten­tial to be cor­ro­sive to the equip­ment and pose spe­cific safety con­cerns. A MAT­LAB GUI has been de­vel­oped to con­trol and mon­i­tor the CVD sys­tem at Cor­nell.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-TUPA15  
About • Received ※ 14 July 2022 — Revised ※ 08 August 2022 — Accepted ※ 09 August 2022 — Issue date ※ 22 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)