Author: Willeke, F.J.
Paper Title Page
MOYD1
Progress on the Electron-Ion Collider  
 
  • F.J. Willeke
    BNL, Upton, New York, USA
  • A. Seryi
    JLab, Newport News, Virginia, USA
 
  Funding: DOE-NP
We will be re­port­ing on the progress of the de­sign and prepara­tory R&D for the Elec­tron-Ion Col­lider.
 
slides icon Slides MOYD1 [14.251 MB]  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOYD5 Tolerances of Crab Dispersion at the Interaction Point in the Hadron Storage Ring of the Electron-Ion Collider 12
 
  • Y. Luo, J.S. Berg, M. Blaskiewicz, C. Montag, V. Ptitsyn, F.J. Willeke, D. Xu
    BNL, Upton, New York, USA
  • Y. Hao
    FRIB, East Lansing, Michigan, USA
  • V.S. Morozov
    ORNL RAD, Oak Ridge, Tennessee, USA
  • J. Qiang
    LBNL, Berkeley, California, USA
  • T. Satogata
    JLab, Newport News, Virginia, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy.
The Elec­tron Ion Col­lider (EIC) presently under con­struc­tion at Brookhaven Na­tional Lab­o­ra­tory will col­lide po­lar­ized high en­ergy elec­tron beams with hadron beams with lu­mi­nos­ity up to 1034 cm-2 s-1 in the cen­ter mass en­ergy range of 20 to 140 GeV. Due to the de­tec­tor so­le­noid in the in­ter­ac­tion re­gion, the de­sign hor­i­zon­tal crab­bing angle will be cou­pled to the ver­ti­cal plane if un­com­pen­sated. In this ar­ti­cle, we es­ti­mate the tol­er­ance of crab dis­per­sion at the in­ter­ac­tion point in the EIC Hadron Stor­age Ring (HSR). Both strong-strong and weak-strong sim­u­la­tions are used. We found that there is a tight tol­er­ance of ver­ti­cal crab­bing angle at the in­ter­ac­tion point in the HSR.
 
slides icon Slides MOYD5 [1.183 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOYD5  
About • Received ※ 01 August 2022 — Accepted ※ 04 August 2022 — Issue date ※ 15 August 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOYD6
Chromatic Correction of the EIC Electron Ring Lattice  
 
  • Y. Cai, Y.M. Nosochkov
    SLAC, Menlo Park, California, USA
  • J.S. Berg, J. Kewisch, Y. Li, D. Marx, C. Montag, S. Tepikian, F.J. Willeke
    BNL, Upton, New York, USA
  • G.H. Hoffstaetter, J.E. Unger
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  We have de­vel­oped a new chro­matic com­pen­sa­tion scheme for the elec­tron stor­age ring with two low-beta in­ter­ac­tion re­gions in the elec­tron-ion col­lider. The hy­brid scheme con­sists of mod­u­lar chro­matic match­ing of pe­ri­odic sys­tems and beam­lines. The first-or­der chro­mat­i­cally matched so­lu­tions are lin­early pa­ra­me­ter­ized with the local lin­ear chro­matic­i­ties that con­trol the higher order chro­matic beat­ings. The pa­ra­me­ter­i­za­tion en­ables an ef­fi­cient op­ti­miza­tion of dy­namic aper­ture. As a re­sult, we suc­cess­fully achieve the 1% de­sign cri­te­rion for the mo­men­tum aper­ture in the ring.  
slides icon Slides MOYD6 [1.667 MB]  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPA75 {6-D} Element-by-Element Particle Tracking with Crab Cavity Phase Noise and Weak-Strong Beam-Beam Interaction for the Hadron Storage Ring of the Electron-Ion Collider 809
 
  • Y. Luo, J.S. Berg, M. Blaskiewicz, C. Montag, V. Ptitsyn, F.J. Willeke, D. Xu
    BNL, Upton, New York, USA
  • Y. Hao
    FRIB, East Lansing, Michigan, USA
  • H. Huang
    ODU, Norfolk, Virginia, USA
  • V.S. Morozov
    ORNL RAD, Oak Ridge, Tennessee, USA
  • J. Qiang
    LBNL, Berkeley, California, USA
  • T. Satogata
    JLab, Newport News, Virginia, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy.
The Elec­tron Ion Col­lider (EIC) presently under con­struc­tion at Brookhaven Na­tional Lab­o­ra­tory will col­lide po­lar­ized high en­ergy elec­tron beams with hadron beams with lu­mi­nos­ity up to 1034 cm-2 s-1 in the cen­ter mass en­ergy range of 20 to 140 GeV. Crab cav­i­ties are used to com­pen­sate the geo­met­ric lu­mi­nos­ity due to a large cross­ing angle in the EIC. How­ever, it was found that the phase noise in crab cav­i­ties will gen­er­ate a sig­nif­i­cant emit­tance growth for hadron beams and its tol­er­ance from an­a­lyt­i­cal cal­cu­la­tion is very small for the Hadron Stor­age Ring (HSR) of the EIC. In this paper, we re­port on 6-D sym­plec­tic par­ti­cle track­ing to es­ti­mate the pro­ton emit­tance growth rate, es­pe­cially in the ver­ti­cal plane, for the HSR with weak-strong beam-beam and other ma­chine or lat­tice er­rors.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-WEPA75  
About • Received ※ 01 August 2022 — Revised ※ 06 August 2022 — Accepted ※ 09 August 2022 — Issue date ※ 19 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THZE2 Developing Control System Specifications and Requirements for Electron Ion Collider 901
 
  • A. Blednykh, D.M. Gassner
    Brookhaven National Laboratory (BNL), Electron-Ion Collider, Upton, New York, USA
  • E.C. Aschenauer, P. Baxevanis, M. Blaskiewicz, K.A. Drees, T. Hayes, J.P. Jamilkowski, G.J. Marr, S. Nemesure, V. Schoefer, T.C. Shrey, K.S. Smith, F.J. Willeke
    BNL, Upton, New York, USA
  • L.R. Dalesio
    EPIC Consulting, Medford, New York, USA
 
  An Ac­cel­er­a­tor Re­search fa­cil­ity is a unique sci­ence and en­gi­neer­ing chal­lenge in that the re­quire­ments for de­vel­op­ing a ro­bust, op­ti­mized sci­ence fa­cil­ity are lim­ited by en­gi­neer­ing and cost lim­i­ta­tions. Each fa­cil­ity is planned to achieve some sci­ence goal within a given sched­ule and bud­get and is then ex­pected to op­er­ate for three decades. In three decades, the me­chan­i­cal sys­tems and the in­dus­trial IO to con­trol them is not likely to change. In that same time, elec­tron­ics will go through some 4 gen­er­a­tions of change. The soft­ware that in­te­grates the sys­tems and pro­vides tools for op­er­a­tions, au­toma­tion, data analy­sis and ma­chine stud­ies will have many new stan­dards. To help un­der­stand the process of de­sign­ing and plan­ning such a fa­cil­ity, we ex­plain the spec­i­fi­ca­tions and re­quire­ments for the Elec­tron Ion Col­lider (EIC) from both a physics and en­gi­neer­ing per­spec­tive.  
slides icon Slides THZE2 [5.375 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-THZE2  
About • Received ※ 04 August 2022 — Revised ※ 10 August 2022 — Accepted ※ 11 August 2022 — Issue date ※ 13 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)