Author: Xiao, L.
Paper Title Page
MOPA85 Design of a 185.7 MHz Superconducting RF Photoinjector Quarter-Wave Resonator for the LCLS-II-HE Low Emittance Injector 245
  • S.H. Kim, W. Hartung, T. Konomi, S.J. Miller, M.S. Patil, J.T. Popielarski, K. Saito, T. Xu, T. Xu
    FRIB, East Lansing, Michigan, USA
  • C. Adolphsen, L. Ge, F. Ji, J.W. Lewellen, L. Xiao
    SLAC, Menlo Park, California, USA
  • M.P. Kelly, T.B. Petersen, P. Piot
    ANL, Lemont, Illinois, USA
  • P. Piot
    Northern Illinois University, DeKalb, Illinois, USA
  Funding: Work supported by the U.S. Department of Energy Contract DE-AC02-76SF00515.
A 185.7 MHz superconducting quarter-wave resonator (QWR) was designed for the low emittance injector of the Linac Coherent Light Source high energy upgrade (LCLS-II-HE). The cavity was designed to minimize the risk of cathode efficiency degradation due to multipacting or field emission and to operate with a high RF electric field at the cathode for low electron-beam emittance. Cavity design features include: (1) shaping of the cavity wall to reduce the strength of the low-field coaxial multipacting barrier; (2) four ports for electropolishing and high-pressure water rinsing; and (3) a fundamental power coupler (FPC) port located away from the accelerating gap. The design is oriented toward minimizing the risk of particulate contamination and avoid harmful dipole components in the RF field. The ANL 162 MHz FPC design for PIP-II is being adapted for the gun cavity. We will present the RF design of the cavity integrated with the FPC.
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA85  
About • Received ※ 03 August 2022 — Revised ※ 09 August 2022 — Accepted ※ 11 August 2022 — Issue date ※ 30 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
WEPA02 Beam Dynamics Studies on a Low Emittance Injector for LCLS-II-HE 619
  • F. Ji, C. Adolphsen, R. Coy, L. Ge, C.E. Mayes, T.O. Raubenheimer, L. Xiao
    SLAC, Menlo Park, California, USA
  • J. Qiang
    LBNL, Berkeley, California, USA
  The SLAC High Energy upgrade of LCLS-II (LCLS-II-HE) will double the beam energy to 8 GeV, increasing the XFEL photon energy reach to about 13 keV. The energy reach can be extended to 20 keV if the beam emittance can be halved, which requires a higher gradient electron gun with a lower intrinsic emittance photocathode. To this end, the Low Emittance Injector (LEI) will be built that will run parallel to the existing LCLS-II Injector. The LEI design will be based on a state-of-the-art SRF gun with a 30 MV/m cathode gradient. The main goal is to produce transverse beam emittances of 0.1 mm-mrad for 100 pC bunch charges. This paper describes the beam dynamics studies on the design of the LEI including the simulations and multi-objective genetic algorithm (MOGA) optimizations. Performance with different injector layouts, cathode gradients, bunch charges and cathode mean transverse energies (MTEs) will be presented.  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-WEPA02  
About • Received ※ 02 August 2022 — Revised ※ 11 August 2022 — Accepted ※ 12 August 2022 — Issue date ※ 17 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
WEPA03 Status of the SLAC/MSU SRF Gun Development Project 623
  • J.W. Lewellen, C. Adolphsen, R. Coy, L. Ge, F. Ji, M.J. Murphy, L. Xiao
    SLAC, Menlo Park, California, USA
  • A. Arnold, S. Gatzmaga, P. Murcek, R. Xiang
    HZDR, Dresden, Germany
  • Y. Choi, C. Compton, X.-J. Du, D.B. Greene, W. Hartung, S.H. Kim, T. Konomi, S.J. Miller, D.G. Morris, M.S. Patil, J.T. Popielarski, L. Popielarski, K. Saito, T. Xu
    FRIB, East Lansing, Michigan, USA
  • M.P. Kelly, T.B. Petersen
    ANL, Lemont, Illinois, USA
  Funding: US Department of Energy.
The LCLS-II-HE project at SLAC is intended to increase the photon energy reach of the LCLS-II FEL to at least 20 keV. In addition to upgrading the undulator system, and increasing the electron beam energy to 8 GeV, the project will also construct a low-emittance injector (LEI) in a new tunnel. To achieve the LEI emittance goals, a low-MTE photocathode will be required, as will on-cathode electric fields up to 50% higher than those achievable in the current LCLS-II photoinjector. The beam source for the LEI will be based around a superconducting quarterwave cavity resonant at 185.7 MHz. A prototype gun is currently being designed and fabricated at the Facility for Rare Isotope Beams (FRIB) at Michigan State University. This paper presents the performance goals for the new gun design, an overview of the prototype development effort, current status, and future plans including fabrication of a "production" gun for the LEI.
poster icon Poster WEPA03 [4.510 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-WEPA03  
About • Received ※ 21 July 2022 — Revised ※ 28 July 2022 — Accepted ※ 08 August 2022 — Issue date ※ 11 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
WEPA08 Design and Operation Experience of a Multi-Collimator/YAG Screen Device on LCLS II Low Energy Beamline 631
  • X. Liu, C. Adolphsen, M. Santana-Leitner, L. Xiao, F. Zhou
    SLAC, Menlo Park, California, USA
  During the commissioning of the normal conducting VHF RF gun of LCLS II, it was observed that field emission (dark current) of roughly 2 µA level was present under normal operation of the gun. While the dark current of this level is deemed manageable with existing beamline configurations, it is desired in precaution to add a collimator on the low energy beamline to block the dark current, being concerned that the dark current situation might worsen with time. Since no spare longitudinal space is available, the new device takes place of the existing YAG screen. The new device is made of a 15 mm thick copper plate, with four round apertures of 6, 8, 10, and 12 mm radius respectively. At the end of the collimator plate, features are made for clamping two YAG screens and mounting their corresponding mirrors for beam/halo profile imaging. The collimator plate is electrically insulated from the chamber so that it can also be used for measuring the dark current. A motor-driven UHV compatible linear translator shifts the device between positions. Besides design details, related thermal, beam dynamics, and radiation analyses as well as operation experience will be presented.

* Work supported by US DOE under contract AC02-76SF00515.
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-WEPA08  
About • Received ※ 02 August 2022 — Revised ※ 09 August 2022 — Accepted ※ 12 August 2022 — Issue date ※ 13 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
WEPA09 A Parallel Automatic Simulation Tool for Cavity Shape Optimization 634
  • L. Ge, Z. Li, C.-K. Ng, L. Xiao
    SLAC, Menlo Park, California, USA
  • M. Beall, B.R. Downie, O. Klaas
    Simmetrix Inc., Clifton Park, USA
  Funding: U.S. Department of Energy under contract No. DE-SC0018715.
We present a parallel automatic shape optimization workflow for designing accelerator cavities. The newly developed 3D parallel optimization tool Opt3P based on discrete adjoint methods is used to determine the optimal accelerator cavity shape with the desired spectral response. Initial and updated models, meshes, and design velocities of design parameters for defining the cavity shape are generated with Simmetrix tools for mesh generation (MeshSim), geometry modification and query (GeomSim), and user interface tools (SimModeler). Two shape optimization examples using this automatic simulation workflow will be presented here. One is the TESLA cavity with higher-order-mode (HOM) couplers and the other is a superconducting rf (SRF) gun. The objective for the TESLA cavity is to minimize HOM damping factors and for the SRF gun to minimize the surface electric and magnetic fields while maintaining its operating mode frequency at a prescribed value. The results demonstrate that the automatic simulation tool allows an efficient shape optimization procedure with minimal manual operations. All simulations were performed on the NERSC supercomputer Cori system for solution speedup.
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-WEPA09  
About • Received ※ 03 August 2022 — Revised ※ 05 August 2022 — Accepted ※ 09 August 2022 — Issue date ※ 08 October 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
WEPA10 Determination of LCLS-II Gun-2 Prototype Dimensions 637
  • L. Xiao, C. Adolphsen, E.N. Jongewaard, X. Liu, F. Zhou
    SLAC, Menlo Park, California, USA
  The LCLS-II spare gun (Gun-2) design is largely based on the existing LCLS-II gun (Gun-1), in which there is significant captured dark current (DC) that originates on the high field copper surface near the cathode plug gap opening. To help suppress DC, the Gun-2 cathode and anode noses and the cathode plug opening are elliptically shaped to minimize the peak surface field for a given cathode gradient. Stainless steel (SS) cathode and anode inserts are used in Gun-2 to further reduce dark current. The RF simulations were performed using a model that includes all the 3D features. The thermal and structural analyses were done to investigate the effects of the air pressure and RF heating. The multi-physics simulation results provided the information needed to compute the overall frequency change from the basic 2D model to the nominal frequency during operation. The Gun-2 cathode-to-anode gap distance will be made 1 mm longer than the nominal gap with the expectation that less than 1 mm will be machined off to meet the target frequency. In this paper, the Gun-2 frequency correction calculations are presented, and the cathode-to-anode gap determination is discussed.  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-WEPA10  
About • Received ※ 30 July 2022 — Revised ※ 03 August 2022 — Accepted ※ 08 August 2022 — Issue date ※ 10 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)