Author: Bullard, D.B.
Paper Title Page
WEPA16 A 500 kV Inverted Geometry Feedthrough for a High Voltage DC Electron Gun 651
  • C. Hernandez-Garcia, D.B. Bullard, J.M. Grames, G.G. Palacios Serrano, M. Poelker
    JLab, Newport News, Virginia, USA
  Funding: Work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under contract DE-AC05-06OR23177 and Office of Science Funding Opportunity LAB 20-2310 award PAMS-254442.
The Continuous Electron Beam Accelerator Facility injector at Jefferson Lab (JLab) utilizes an inverted-geometry ceramic insulator photogun operating at 130 kV direct current to generate spin-polarized electron beams for high-energy nuclear physics experiments. A second photogun delivers 180 keV beam for commissioning a SRF booster in a testbed accelerator, and a larger version delivers 300 keV magnetized beam in a test stand beam line. This contribution reports on the development of an unprecedented inverted-insulator with cable connector for reliably applying 500 kV DC to a future polarized beam photogun, to be designed for operating at 350 kV without field emission. Such a photogun design could then be used for generating a polarized electron beam to drive a spin-polarized positron source as a demonstrator for high energy nuclear physics at JLab. There are no commercial cable connectors that fit the large inverted insulators required for that voltage range. Our proposed concept is based on a modified epoxy receptacle with intervening SF6 layer and a test electrode in a vacuum vessel.
poster icon Poster WEPA16 [6.217 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-WEPA16  
About • Received ※ 03 August 2022 — Revised ※ 05 August 2022 — Accepted ※ 07 August 2022 — Issue date ※ 09 October 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
WEPA17 Improved Electrostatic Design of the Jefferson Lab 300 kV DC Photogun and the Minimization of Beam Deflection 655
  • M.A. Mamun, D.B. Bullard, J.M. Grames, C. Hernandez-Garcia, G.A. Krafft, M. Poelker, R. Suleiman
    JLab, Newport News, Virginia, USA
  • J.R. Delayen, G.A. Krafft, G.G. Palacios Serrano, S.A.K. Wijethunga
    ODU, Norfolk, Virginia, USA
  Funding: This work is supported by the Department of Energy, under contract DE-AC05-06OR23177, JSA initiatives fund program, and the Laboratory Directed Research and Development program.
An electron beam with high bunch charge and high repetition rate is required for electron cooling of the ion beam to achieve the high luminosity required for the proposed electron-ion colliders. An improved design of the 300 kV DC high voltage photogun at Jefferson Lab was incorporated toward overcoming the beam loss and space charge current limitation experienced in the original design. To reach the bunch charge goal of ~ few nC within 75 ps bunches, the existing DC high voltage photogun electrodes and anode-cathode gap were modified to increase the longitudinal electric field (Ez) at the photocathode. The anode-cathode gap was reduced to increase the Ez at the photocathode, and the anode aperture was spatially shifted with respect to the beamline longitudinal axis to minimize the beam deflection introduced by the geometric asymmetry of the inverted insulator photogun. The electrostatic design and beam dynamics simulations were performed to determine the required modification. Beam-based measurement from the modified gun confirmed the reduction of the beam deflection, which is presented in this contribution.
poster icon Poster WEPA17 [2.973 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-WEPA17  
About • Received ※ 23 July 2022 — Revised ※ 28 July 2022 — Accepted ※ 05 August 2022 — Issue date ※ 11 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)