Author: Plastun, A.S.
Paper Title Page
WEYE2 Upgrade of the FRIB ReAccelerator 572
 
  • A.C.C. Villari, B. Arend, G. Bollen, D.B. Crisp, K.D. Davidson, K. Fukushima, A.I. Henriques, K. Holland, S.H. Kim, A. Lapierre, Y. Liu, T. Maruta, D.G. Morris, S. Nash, P.N. Ostroumov, A.S. Plastun, J. Priller, S. Schwarz, B.M. Sherrill, M. Steiner, C. Sumithrarachchi, R. Walker, T. Zhang, Q. Zhao
    FRIB, East Lansing, Michigan, USA
 
  Funding: Work supported by the NSF under grant PHY15-65546 and DOE-SC under award number DE-SC0000661
The reaccelerator facility at FRIB was upgraded to provide new science opportunities. The upgrade included a new ion source to produce stable and long livied rare isotopes in a batch mode, a new room-temperature rebuncher, a new β = 0.085 quarter-wave-resonator cryomodule to increase the beam energy from 3 MeV/u to 6 MeV/u for ions with a charge-to-mass ratio of 1/4, and a new experimental vault with beamlines.
 
slides icon Slides WEYE2 [4.220 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-WEYE2  
About • Received ※ 13 July 2022 — Revised ※ 01 August 2022 — Accepted ※ 08 August 2022 — Issue date ※ 10 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPA48 Electromagnetic Design of a Compact RF Chopper for Heavy-Ion Beam Separation at FRIB 738
 
  • A.C. Araujo Martinez, R.B. Agustsson, Y.C. Chen, S.V. Kutsaev
    RadiaBeam, Santa Monica, California, USA
  • A.S. Plastun, X. Rao
    FRIB, East Lansing, Michigan, USA
 
  Funding: This work was supported by the U.S. Department of Energy, Office of High Energy Physics, under SBIR grant DE- SC0020671.
Rare isotope beams are produced at FRIB via fragmentation of a primary heavy ion beam in a thin target. The isotope beam of interest is contaminated with other fragments, which must be filtered out to ensure the delivery of rare isotopes with desired rates and purities. One of the stages of fragment separation uses an RF deflecting cavity to provide time-of-flight separation. However, to avoid neighboring bunches overlapping with each other and with the contaminants, it is necessary to increase the inter-bunch distance by a factor of four, corresponding to a 20.125 MHz rate. To solve this problem, we have developed an RF chopper system for the 500 keV/u primary heavy-ion beams. The system consists of a deflecting quarter wave resonator (QWR) cavity operating at 60.375 MHz, two dipole steering magnets, and a beam dump. In this paper, we present and discuss the optimization of the electromagnetic design of the QWR cavity and magnets, as well as some aspects, related to beam dynamics and conceptual engineering design.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-WEPA48  
About • Received ※ 02 August 2022 — Revised ※ 05 August 2022 — Accepted ※ 06 August 2022 — Issue date ※ 08 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THZD1 Instant Phase Setting in a Large Superconducting Linac 885
 
  • A.S. Plastun, P.N. Ostroumov
    FRIB, East Lansing, Michigan, USA
 
  Funding: This work is supported by the U.S. Department of Energy Office of Science under Cooperative Agreement No. DE-SC0000661, the State of Michigan, and Michigan State University.
The instant phase setting reduces the time needed to setup 328 radiofrequency cavities of the Facility for Rare Isotope Beams (FRIB) linac from 20 hours to 10 minutes. This technique uses a 1-D computer model of the linac to predict the cavities’ phases. The model has been accurately calibrated using the data of the 360-degree phase scans - a common procedure for phasing of linear accelerators. The model was validated by comparison with a conventional phase scan results. The predictions applied to the linac are then verified by multiple time-of-flight energy measurements and the response of the beam position/phase monitors (BPMs) to an intentional energy and phase mismatch. The presented approach not just reduces the time and the effort required to tune the FRIB accelerator for new experiments every couple of weeks, but it also provides an easy recovery from cavity failures. It is beneficial for user facilities requiring high beam availability, as well as for radioactive ion beam accelerators, where quick time-of-flight energy measurement via the BPMs is not possible due to the low intensities of these beams.
 
slides icon Slides THZD1 [2.610 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-THZD1  
About • Received ※ 07 August 2022 — Revised ※ 09 August 2022 — Accepted ※ 10 August 2022 — Issue date ※ 21 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)