Keyword: betatron
Paper Title Other Keywords Page
TUZE1 Experimental Phase-Space Tracking of a Single Electron in a Storage Ring photon, electron, synchrotron, experiment 329
 
  • A.L. Romanov, J.K. Santucci, G. Stancari, A. Valishev
    Fermilab, Batavia, Illinois, USA
 
  This paper presents the results of the first ever experimental tracking of the betatron and synchrotron phases for a single electron in the Fermilab’s IOTA ring. The reported technology makes it is possible to fully track a single electron in a storage ring, which requires tracking of amplitudes and phases for both, slow synchrotron and fast betatron oscillations.  
slides icon Slides TUZE1 [3.600 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-TUZE1  
About • Received ※ 08 August 2022 — Revised ※ 11 August 2022 — Accepted ※ 21 August 2022 — Issue date ※ 27 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPA84 Reconstructing Beam Parameters from Betatron Radiation Through Machine Learning and Maximum Likelihood Estimation radiation, simulation, diagnostics, plasma 527
 
  • S. Zhang, N. Majernik, B. Naranjo, J.B. Rosenzweig, M. Yadav
    UCLA, Los Angeles, California, USA
  • Ö. Apsimon, C.P. Welsch, M. Yadav
    The University of Liverpool, Liverpool, United Kingdom
 
  Funding: US Department of Energy, Division of High Energy Physics, under Contract No. DE-SC0009914.
The dense drive beam used in plasma wakefield acceleration generates a linear focusing force that causes electrons inside the witness beam to undergo betatron oscillations, giving rise to betatron radiation. Because information about the properties of the beam is encoded in the betatron radiation, measurements of the radiation such as those recorded by the UCLA-built Compton spectrometer can be used to reconstruct beam parameters. Two possible methods of extracting information about beam parameters from measurements of radiation are machine learning (ML), which is increasingly being implemented for different fields of beam diagnostics, and a statistical technique known as maximum likelihood estimation (MLE). We assess the ability of both machine learning and MLE methods to accurately extract beam parameters from measurements of betatron radiation.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-TUPA84  
About • Received ※ 02 August 2022 — Revised ※ 07 August 2022 — Accepted ※ 10 August 2022 — Issue date ※ 05 October 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPA36 Emittance Growth Due to RF Phase Noise in Crab Cavities cavity, emittance, simulation, collider 708
 
  • H. Huang, S. Zhao
    ODU, Norfolk, Virginia, USA
  • F. Lin, V.S. Morozov
    ORNL RAD, Oak Ridge, Tennessee, USA
  • Y. Luo
    Brookhaven National Laboratory (BNL), Electron-Ion Collider, Upton, New York, USA
  • T. Satogata, Y. Zhang
    JLab, Newport News, Virginia, USA
  • B.P. Xiao, D. Xu
    BNL, Upton, New York, USA
 
  The Electron-Ion Collider (EIC) incorporates beam crabbing to recover geometric luminosity loss from the nonzero crossing angle at the interaction point (IP). It is well-known that crab cavity imperfections can cause growth of colliding beam emittances, thus degrading collider performance. Here we report a particle tracking study to quantify these effects. Presently the study is focused on crab cavity RF phase noise. Simulations were carried out using Bmad. Dependence of emittance growth on phase noise level was obtained which could be used for developing crab cavity phase control specifications. We also benchmarked these simulations with theory.  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-WEPA36  
About • Received ※ 02 August 2022 — Revised ※ 07 August 2022 — Accepted ※ 12 August 2022 — Issue date ※ 02 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)