Author: Montag, C.
Paper Title Page
MOYD4 Model Parameters Determination in EIC Strong-Strong Simulation 9
 
  • D. Xu, C. Montag
    BNL, Upton, New York, USA
  • Y. Hao
    FRIB, East Lansing, Michigan, USA
  • Y. Luo
    Brookhaven National Laboratory (BNL), Electron-Ion Collider, Upton, New York, USA
  • J. Qiang
    LBNL, Berkeley, California, USA
 
  The ion beam is sensitive to numerical noise in the strong-strong simulation of the Electron-Ion Collider (EIC). This paper discusses the impact of model parameters — macro particles, transverse grids and longitudinal slices — on beam size evolution in PIC based strong-strong simulation. It will help us to understand the emittance growth in strong-strong simulation.  
slides icon Slides MOYD4 [0.849 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOYD4  
About • Received ※ 02 August 2022 — Revised ※ 03 August 2022 — Accepted ※ 10 August 2022 — Issue date ※ 11 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOYD5 Tolerances of Crab Dispersion at the Interaction Point in the Hadron Storage Ring of the Electron-Ion Collider 12
 
  • Y. Luo, J.S. Berg, M. Blaskiewicz, C. Montag, V. Ptitsyn, F.J. Willeke, D. Xu
    BNL, Upton, New York, USA
  • Y. Hao
    FRIB, East Lansing, Michigan, USA
  • V.S. Morozov
    ORNL RAD, Oak Ridge, Tennessee, USA
  • J. Qiang
    LBNL, Berkeley, California, USA
  • T. Satogata
    JLab, Newport News, Virginia, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy.
The Electron Ion Collider (EIC) presently under construction at Brookhaven National Laboratory will collide polarized high energy electron beams with hadron beams with luminosity up to 1034 cm-2 s-1 in the center mass energy range of 20 to 140 GeV. Due to the detector solenoid in the interaction region, the design horizontal crabbing angle will be coupled to the vertical plane if uncompensated. In this article, we estimate the tolerance of crab dispersion at the interaction point in the EIC Hadron Storage Ring (HSR). Both strong-strong and weak-strong simulations are used. We found that there is a tight tolerance of vertical crabbing angle at the interaction point in the HSR.
 
slides icon Slides MOYD5 [1.183 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOYD5  
About • Received ※ 01 August 2022 — Accepted ※ 04 August 2022 — Issue date ※ 15 August 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOYD6
Chromatic Correction of the EIC Electron Ring Lattice  
 
  • Y. Cai, Y.M. Nosochkov
    SLAC, Menlo Park, California, USA
  • J.S. Berg, J. Kewisch, Y. Li, D. Marx, C. Montag, S. Tepikian, F.J. Willeke
    BNL, Upton, New York, USA
  • G.H. Hoffstaetter, J.E. Unger
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  We have developed a new chromatic compensation scheme for the electron storage ring with two low-beta interaction regions in the electron-ion collider. The hybrid scheme consists of modular chromatic matching of periodic systems and beamlines. The first-order chromatically matched solutions are linearly parameterized with the local linear chromaticities that control the higher order chromatic beatings. The parameterization enables an efficient optimization of dynamic aperture. As a result, we successfully achieve the 1% design criterion for the momentum aperture in the ring.  
slides icon Slides MOYD6 [1.667 MB]  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPA17 Beam-Based Alignment of Sextupole Families in the EIC 378
 
  • J.C. Wang, G.H. Hoffstaetter, D. Sagan
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • C. Montag
    BNL, Upton, New York, USA
 
  To steer the closed orbit in a storage ring through the center of its quadrupoles, it is important to accurately know the quadrupole centers relative to nearby beam position monitors. Usually this is achieved by beam-based alignment (BBA). Assuming the quadrupole strength can be changed individually, one finds the BPM reading where changing a quadrupole’s strength does not alter the closed orbit. Since most quadrupoles are powered in series, they can only be varied independently if costly power supplies are added. For the EIC electron storage ring (ESR), we investigate whether sextupole BBA can be used instead. Individually powered sextupole BBA techniques already exist, but most sextupoles are powered in families and cannot be individually changed. We therefore developed a method where a localized bump changes the beam excursion in a single sextupole of a family, turning off all families that also have sextupoles in the bump. The bump amplitude at which the sextupole does not cause a closed orbit kick determines the sextupole’s alignment. This study was made to investigate the precision to which this method can be utilized.  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-TUPA17  
About • Received ※ 04 August 2022 — Revised ※ 08 August 2022 — Accepted ※ 10 August 2022 — Issue date ※ 29 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPA75 {6-D} Element-by-Element Particle Tracking with Crab Cavity Phase Noise and Weak-Strong Beam-Beam Interaction for the Hadron Storage Ring of the Electron-Ion Collider 809
 
  • Y. Luo, J.S. Berg, M. Blaskiewicz, C. Montag, V. Ptitsyn, F.J. Willeke, D. Xu
    BNL, Upton, New York, USA
  • Y. Hao
    FRIB, East Lansing, Michigan, USA
  • H. Huang
    ODU, Norfolk, Virginia, USA
  • V.S. Morozov
    ORNL RAD, Oak Ridge, Tennessee, USA
  • J. Qiang
    LBNL, Berkeley, California, USA
  • T. Satogata
    JLab, Newport News, Virginia, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy.
The Electron Ion Collider (EIC) presently under construction at Brookhaven National Laboratory will collide polarized high energy electron beams with hadron beams with luminosity up to 1034 cm-2 s-1 in the center mass energy range of 20 to 140 GeV. Crab cavities are used to compensate the geometric luminosity due to a large crossing angle in the EIC. However, it was found that the phase noise in crab cavities will generate a significant emittance growth for hadron beams and its tolerance from analytical calculation is very small for the Hadron Storage Ring (HSR) of the EIC. In this paper, we report on 6-D symplectic particle tracking to estimate the proton emittance growth rate, especially in the vertical plane, for the HSR with weak-strong beam-beam and other machine or lattice errors.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-WEPA75  
About • Received ※ 01 August 2022 — Revised ※ 06 August 2022 — Accepted ※ 09 August 2022 — Issue date ※ 19 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPA83 Extended Soft-Gaussian Code for Beam-Beam Simulations 830
 
  • D. Xu, C. Montag
    BNL, Upton, New York, USA
  • Y. Hao
    FRIB, East Lansing, Michigan, USA
  • Y. Luo
    Brookhaven National Laboratory (BNL), Electron-Ion Collider, Upton, New York, USA
  • J. Qiang
    LBNL, Berkeley, California, USA
 
  Large ion beam emittance growth is observed in strong-strong beam-beam simulations for the Electron-Ion Collider (EIC). As we know, the Particle-In-Cell (PIC) solver is subject to numerical noises. As an alternative approach, an extended soft-Gaussian code is developed with help of Hermite polynomials in this paper. The correlation between the horizontal and the vertical coordinates of macro-particles is considered. The 3rd order center moments are also included in the beam-beam force. This code could be used as a cross check tool of PIC based strong-strong simulation.  
poster icon Poster WEPA83 [0.440 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-WEPA83  
About • Received ※ 02 August 2022 — Revised ※ 05 August 2022 — Accepted ※ 08 August 2022 — Issue date ※ 24 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)