Author: Piot, P.
Paper Title Page
MOZE3 Emittance Measurements and Simulations from an X-Band Short-Pulse Ultra-High Gradient Photoinjector 45
 
  • G. Chen, D.S. Doran, C.-J. Jing, S.Y. Kim, W. Liu, W. Liu, P. Piot, J.G. Power, C. Whiteford, E.E. Wisniewski
    ANL, Lemont, Illinois, USA
  • C.-J. Jing, E.W. Knight, S.V. Kuzikov
    Euclid TechLabs, Solon, Ohio, USA
  • C.-J. Jing
    Euclid Beamlabs, Bolingbrook, USA
  • X. Lu, P. Piot, W.H. Tan
    Northern Illinois University, DeKalb, Illinois, USA
 
  Funding: This work is supported by the U.S. DOE, under award No. DE-SC0018656 to NIU, DOE SBIR grant No. DE-SC0018709 to Euclid Techlabs LLC, and contract No. DE-AC02-06CH11357 with ANL.
A pro­gram is under way at the Ar­gonne Wake­field Ac­cel­er­a­tor fa­cil­ity, in col­lab­o­ra­tion with the Eu­clid Tech­labs and North­ern Illi­nois Uni­ver­sity (NIU), to de­velop a GeV/m scale pho­to­cath­ode gun, with the ul­ti­mate goal of demon­strat­ing a high-bright­ness pho­toin­jec­tor beam­line. The novel X-band pho­toe­mis­sion gun (Xgun) is pow­ered by high-power, short RF pulses, 9-ns (FWHM), which, in turn, are gen­er­ated by the AWA drive beam. In a pre­vi­ous proof-of-prin­ci­ple ex­per­i­ment, an un­prece­dented 400~MV/m gra­di­ent on the pho­to­cath­ode sur­face* was demon­strated. In the cur­rent ver­sion of the ex­per­i­ment, we added a linac to the beam­line to in­crease the total en­ergy and gain ex­pe­ri­ence tun­ing the beam­line. In this paper, we re­port on the very first re­sult of emit­tance mea­sure­ment as well as sev­eral other beam pa­ra­me­ters. This pre­lim­i­nary in­ves­ti­ga­tion has iden­ti­fied sev­eral fac­tors to be im­proved on in order to achieve one of the ul­ti­mate goals; low emit­tance.
* W. H. Tan et al., "Demonstration of sub-GV/m Accelerating Field in a Photoemission Electron Gun Powered by Nanosecond X-Band Radiofrequency Pulses", 2022. arXiv:2203.11598v1
 
slides icon Slides MOZE3 [5.565 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOZE3  
About • Received ※ 03 August 2022 — Revised ※ 05 August 2022 — Accepted ※ 11 August 2022 — Issue date ※ 14 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPA50 Integrated Photonics Structure Cathodes for Longitudinally Shaped Bunch Trains 160
 
  • S.J. Coleman, D.T. Abell, C.C. Hall
    RadiaSoft LLC, Boulder, Colorado, USA
  • R. Kapadia
    University of Southern California, Los Angeles, California, USA
  • S.S. Karkare
    Arizona State University, Tempe, USA
  • S.Y. Kim, P. Piot, J.F. Power
    ANL, Lemont, Illinois, USA
 
  Funding: This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of High Energy Physics under Award Number DOE DE-SC0021681
Com­pact, high-gra­di­ent struc­ture wake­field ac­cel­er­a­tors can op­er­ate at im­proved ef­fi­ciency using shaped elec­tron beams, such as a high trans­former ratio beam shape, to drive the wakes. These shapes have gen­er­ally come from a pho­to­cath­ode gun fol­lowed by a trans­verse mask to im­print a de­sired shape on the trans­verse dis­tri­b­u­tion, and then an emit­tance ex­changer (EEX) to con­vert that trans­verse shape into a lon­gi­tu­di­nal dis­tri­b­u­tion. This process dis­cards some large frac­tion of the beam, lim­it­ing wall-plug ef­fi­ciency as well as leav­ing a solid ob­ject in the path of the beam. In this paper, we pre­sent a pro­posed method of using in­te­grated pho­ton­ics struc­tures to con­trol the emis­sion pat­tern on the cath­ode sur­face. This trans­verse pat­tern is then con­verted into a lon­gi­tu­di­nal pat­tern at the end of an EEX. This re­moves the need for the mask, pre­serv­ing the total charge pro­duced at the cath­ode sur­face. We pre­sent sim­u­la­tions of an ex­per­i­men­tal set-up to demon­strate this con­cept at the Ar­gonne Wake­field Ac­cel­er­a­tor.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA50  
About • Received ※ 03 August 2022 — Revised ※ 05 August 2022 — Accepted ※ 26 August 2022 — Issue date ※ 03 October 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPA72 Preliminary Tests and Beam Dynamics Simulations of a Straight-Merger Beamline 206
 
  • A.A. Al Marzouk, P. Piot, T. Xu
    Northern Illinois University, DeKalb, Illinois, USA
  • S.V. Benson, K.E. Deitrick, J. Guo, A. Hutton, G.-T. Park, S. Wang
    JLab, Newport News, Virginia, USA
  • D.S. Doran, G. Ha, P. Piot, J.G. Power, C. Whiteford, E.E. Wisniewski
    ANL, Lemont, Illinois, USA
  • C.E. Mitchell, J. Qiang, R.D. Ryne
    LBNL, Berkeley, California, USA
 
  Funding: NSF award PHY-1549132 to Cornell University and NIU, U.S. DOE contract DE-AC02-06CH11357 with ANL and DE-AC05-06OR23177 with JLAB.
Beam­lines ca­pa­ble of merg­ing beams with dif­fer­ent en­er­gies are crit­i­cal to many ap­pli­ca­tions re­lated to ad­vanced ac­cel­er­a­tor con­cepts and en­ergy-re­cov­ery linacs (ERLs). In an ERL, a low-en­ergy "fresh" bright bunch is gen­er­ally in­jected into a su­per­con­duct­ing linac for ac­cel­er­a­tion using the fields es­tab­lished by a de­cel­er­ated "spent" beam trav­el­ing on the same axis. A straight-merger sys­tem com­posed of a se­lect­ing cav­ity with a su­per­im­posed di­pole mag­net was pro­posed and re­cently test at AWA. This paper re­ports on the ex­per­i­men­tal re­sults ob­tained so far along with de­tailed beam dy­nam­ics in­ves­ti­ga­tions of the merger con­cept and its abil­ity to con­serve the beam bright­ness as­so­ci­ated with the fresh bunch.
 
poster icon Poster MOPA72 [1.659 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA72  
About • Received ※ 11 August 2022 — Accepted ※ 13 August 2022 — Issue date ※ 02 October 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPA74 Design of a W-Band Corrugated Waveguide for Structure Wakefield Acceleration 210
 
  • B. Leung, X. Lu, C.L. Phillips, P. Piot
    Northern Illinois University, DeKalb, Illinois, USA
  • D.S. Doran, X. Lu, P. Piot, J.G. Power
    ANL, Lemont, Illinois, USA
 
  Cur­rent re­search on struc­ture wake­field ac­cel­er­a­tion aims to de­velop ra­dio-fre­quency struc­tures that can pro­duce high gra­di­ents, with work in the sub-ter­a­hertz regime being par­tic­u­larly in­ter­est­ing be­cause of the po­ten­tial to cre­ate more com­pact and eco­nom­i­cal ac­cel­er­a­tors. Metal­lic cor­ru­gated wave­guides at sub-ter­a­hertz fre­quen­cies are one such struc­ture. We have de­signed a W-band cor­ru­gated wave­guide for a collinear wake­field ac­cel­er­a­tion ex­per­i­ment at the Ar­gonne Wake­field Ac­cel­er­a­tor (AWA). Using the CST Stu­dio Suite, we have op­ti­mized the struc­ture for the max­i­mum achiev­able gra­di­ent in the wake­field from a nom­i­nal AWA elec­tron bunch at 65 MeV. Sim­u­la­tion re­sults from dif­fer­ent solvers of CST were bench­marked with each other, with an­a­lyt­i­cal mod­els, and with an­other sim­u­la­tion code, ECHO. We are in­ves­ti­gat­ing the me­chan­i­cal de­sign, suit­able fab­ri­ca­tion tech­nolo­gies, and the pos­si­bil­ity to apply ad­vanced bunch shap­ing tech­niques to im­prove the struc­ture per­for­mance.  
poster icon Poster MOPA74 [1.518 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA74  
About • Received ※ 30 July 2022 — Revised ※ 03 August 2022 — Accepted ※ 07 August 2022 — Issue date ※ 26 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPA78 Temporally-Shaped Ultraviolet Pulses for Tailored Bunch Generation at Argonne Wakefield Accelerator 222
 
  • T. Xu, P. Piot
    Northern Illinois University, DeKalb, Illinois, USA
  • S. Carbajo
    UCLA, Los Angeles, California, USA
  • S. Carbajo, R.A. Lemons
    SLAC, Menlo Park, California, USA
  • P. Piot
    ANL, Lemont, Illinois, USA
 
  Pho­to­cath­ode laser shap­ing is an ap­peal­ing tech­nique to gen­er­ate tai­lored elec­tron bunches due to its ver­sa­til­ity and sim­plic­ity. Most pho­to­cath­odes re­quire pho­ton en­er­gies ex­ceed­ing the nom­i­nal pho­ton en­ergy pro­duced by the las­ing medium. A com­mon setup con­sists of an in­frared (IR) laser sys­tem with non­lin­ear fre­quency con­ver­sion to the ul­tra­vi­o­let (UV). In this work, we pre­sent the nu­mer­i­cal mod­el­ing of a tem­po­ral shap­ing tech­nique ca­pa­ble of pro­duc­ing elec­tron bunches with lin­early-ramped cur­rent pro­files for ap­pli­ca­tion to collinear wake­field ac­cel­er­a­tors. Specif­i­cally, we show that con­trol­ling higher-or­der dis­per­sion terms as­so­ci­ated with the IR pulse pro­vides some con­trol over the UV tem­po­ral shape. Beam dy­nam­ics sim­u­la­tion of an elec­tron-bunch shap­ing ex­per­i­ment at the Ar­gonne Wake­field Ac­cel­er­a­tor is pre­sented.  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA78  
About • Received ※ 01 August 2022 — Revised ※ 06 August 2022 — Accepted ※ 09 August 2022 — Issue date ※ 31 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPA85 Design of a 185.7 MHz Superconducting RF Photoinjector Quarter-Wave Resonator for the LCLS-II-HE Low Emittance Injector 245
 
  • S.H. Kim, W. Hartung, T. Konomi, S.J. Miller, M.S. Patil, J.T. Popielarski, K. Saito, T. Xu, T. Xu
    FRIB, East Lansing, Michigan, USA
  • C. Adolphsen, L. Ge, F. Ji, J.W. Lewellen, L. Xiao
    SLAC, Menlo Park, California, USA
  • M.P. Kelly, T.B. Petersen, P. Piot
    ANL, Lemont, Illinois, USA
  • P. Piot
    Northern Illinois University, DeKalb, Illinois, USA
 
  Funding: Work supported by the U.S. Department of Energy Contract DE-AC02-76SF00515.
A 185.7 MHz su­per­con­duct­ing quar­ter-wave res­onator (QWR) was de­signed for the low emit­tance in­jec­tor of the Linac Co­her­ent Light Source high en­ergy up­grade (LCLS-II-HE). The cav­ity was de­signed to min­i­mize the risk of cath­ode ef­fi­ciency degra­da­tion due to mul­ti­pact­ing or field emis­sion and to op­er­ate with a high RF elec­tric field at the cath­ode for low elec­tron-beam emit­tance. Cav­ity de­sign fea­tures in­clude: (1) shap­ing of the cav­ity wall to re­duce the strength of the low-field coax­ial mul­ti­pact­ing bar­rier; (2) four ports for elec­trop­o­l­ish­ing and high-pres­sure water rins­ing; and (3) a fun­da­men­tal power cou­pler (FPC) port lo­cated away from the ac­cel­er­at­ing gap. The de­sign is ori­ented to­ward min­i­miz­ing the risk of par­tic­u­late con­t­a­m­i­na­tion and avoid harm­ful di­pole com­po­nents in the RF field. The ANL 162 MHz FPC de­sign for PIP-II is being adapted for the gun cav­ity. We will pre­sent the RF de­sign of the cav­ity in­te­grated with the FPC.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA85  
About • Received ※ 03 August 2022 — Revised ※ 09 August 2022 — Accepted ※ 11 August 2022 — Issue date ※ 30 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPA28 Update on the Development of a Low-Cost Button BPM Signal Detector at AWA 409
 
  • W. Liu, G. Chen, D.S. Doran, S.Y. Kim, X. Lu, P. Piot, J.G. Power, C. Whiteford, E.E. Wisniewski
    ANL, Lemont, Illinois, USA
  • E.E. Wisniewski
    IIT, Chicago, Illinois, USA
 
  Funding: Work supported by the US Department of Energy, Office of Science.
A sin­gle-pulse, high dy­namic range, cost-ef­fec­tive BPM sig­nal de­tec­tor has been on the most wanted list of the Ar­gonne Wake­field Ac­cel­er­a­tor (AWA) Test Fa­cil­ity for many years. The unique ca­pa­bil­i­ties of the AWA beam­line re­quire BPM in­stru­men­ta­tion with an un­prece­dented dy­namic range, thus a cost-ef­fec­tive so­lu­tion could be chal­leng­ing to de­sign and pro­to­type. With the help of a bet­ter cir­cuit model for a but­ton BPM sig­nal source, we are able to do the cir­cuit sim­u­la­tions with more re­al­is­tic input sig­nals and make pre­dic­tions much closer to re­al­i­ties. Our most re­cent de­sign and pro­to­type re­sults are shared in this paper.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-TUPA28  
About • Received ※ 01 August 2022 — Revised ※ 08 August 2022 — Accepted ※ 11 August 2022 — Issue date ※ 09 October 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPA34 Model-Based Calibration of Control Parameters at the Argonne Wakefield Accelerator 427
 
  • I.P. Sugrue, B. Mustapha, P. Piot, J.G. Power
    ANL, Lemont, Illinois, USA
  • N. Krislock
    Northern Illinois University, DeKalb, Illinois, USA
 
  Par­ti­cle ac­cel­er­a­tors uti­lize a large num­ber of con­trol pa­ra­me­ters to gen­er­ate and ma­nip­u­late beams. Dig­i­tal mod­els and sim­u­la­tions are often used to find the best op­er­at­ing pa­ra­me­ters to achieve a set of given beam pa­ra­me­ters. Un­for­tu­nately, the op­ti­mized physics pa­ra­me­ters can­not pre­cisely be set in the con­trol sys­tem due to, e.g., cal­i­bra­tion un­cer­tain­ties. We de­vel­oped a data-dri­ven physics-in­formed sur­ro­gate model using neural net­works to re­place dig­i­tal mod­els re­ly­ing on beam-dy­nam­ics sim­u­la­tions. This sur­ro­gate model can then be used to per­form quick di­ag­nos­tics of the Ar­gonne Wake­field ac­cel­er­a­tor in real time using non­lin­ear least-squares meth­ods to find the most likely op­er­at­ing pa­ra­me­ters given a mea­sured beam dis­tri­b­u­tion.  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-TUPA34  
About • Received ※ 05 August 2022 — Revised ※ 09 August 2022 — Accepted ※ 10 August 2022 — Issue date ※ 24 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPA85 First Results from a Multileaf Collimator and Emittance Exchange Beamline 531
 
  • N. Majernik, G. Andonian, C.D. Lorch, W.J. Lynn, J.B. Rosenzweig
    UCLA, Los Angeles, California, USA
  • D.S. Doran, S.Y. Kim, P. Piot, J.G. Power, C. Whiteford, E.E. Wisniewski
    ANL, Lemont, Illinois, USA
 
  Funding: Department of Energy DE-SC0017648 and National Science Foundation PHY-1549132.
By shap­ing the trans­verse pro­file of a par­ti­cle beam prior to an emit­tance ex­change (EEX) beam­line, drive and wit­ness beams with vari­able cur­rent pro­files and bunch spac­ing can be pro­duced. Presently at AWA, this trans­verse shap­ing is ac­com­plished with in­di­vid­u­ally laser-cut tung­sten masks, mak­ing the re­fine­ment of beam pro­files a slow process. In con­trast, a mul­ti­leaf col­li­ma­tor (MLC) is a de­vice that can se­lec­tively mask the pro­file of a beam using many in­de­pen­dently ac­tu­ated leaves. Since an MLC per­mits real-time ad­just­ment of the beam shape, its use as a beam mask would per­mit much faster op­ti­miza­tion in a man­ner highly syn­er­gis­tic with ma­chine learn­ing. Beam dy­nam­ics sim­u­la­tions have shown that such an ap­proach is func­tion­ally equiv­a­lent to that of­fered by the laser cut masks. In this work, the con­struc­tion and first re­sults from a 40-leaf, UHV com­pat­i­ble MLC are dis­cussed.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-TUPA85  
About • Received ※ 16 July 2022 — Revised ※ 02 August 2022 — Accepted ※ 11 August 2022 — Issue date ※ 12 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOYE3 Experiments on a Conduction Cooled Superconducting Radio Frequency Cavity with Field Emission Cathode 16
 
  • Y. Ji, R. Dhuley, C.J. Edwards, J.C.T. Thangaraj
    Fermilab, Batavia, Illinois, USA
  • V. Korampally, D. Mihalcea, O. Mohsen, P. Piot, I. Salehinia
    Northern Illinois University, DeKalb, USA
 
  Funding: The project is supported by DOE HEP Accelerator Stewardship award to Fermilab and Northern Illinois University
To achieve Am­pere-class elec­tron beam ac­cel­er­a­tors the pulse de­liv­ery rate need to be much higher than the typ­i­cal photo in­jec­tor rep­e­ti­tion rate of the order of a few kilo­hertz. We pro­pose here an in­jec­tor which can, in prin­ci­ple, gen­er­ate elec­tron bunches at the same rate as the op­er­at­ing RF fre­quency. A con­duc­tion-cooled su­per­con­duct­ing radio fre­quency (SRF) cav­ity op­er­at­ing in the CW mode and hous­ing a field emis­sion el­e­ment at its re­gion of high axial elec­tric field can be a vi­able method of gen­er­at­ing high-rep­e­ti­tion-rate elec­tron bunches. In this paper, we re­port the de­vel­op­ment and ex­per­i­ments on a con­duc­tion-cooled Nb3Sn cav­ity with a nio­bium rod in­tended as a field emit­ter sup­port. The ini­tial ex­per­i­ments demon­strate ~0.4 MV/m av­er­age ac­cel­er­at­ing gra­di­ent, which is equiv­a­lent of peak gra­di­ent of 3.2 MV/m. The mea­sured RF cav­ity qual­ity fac­tor is 1.4 × 108 slightly above our goal. The achieved field gra­di­ent is lim­ited by the rel­a­tively low input RF power and by the poor cou­pling be­tween the ex­ter­nal power sup­ply and the RF cav­ity. With ideal cou­pling the field gra­di­ent can be as high as 0.6 MV/m still below our goal of about 1 MV/m
 
slides icon Slides MOYE3 [1.444 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOYE3  
About • Received ※ 01 August 2022 — Revised ※ 03 August 2022 — Accepted ※ 05 August 2022 — Issue date ※ 30 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPA55 Facilitating Machine Learning Collaborations Between Labs, Universities, and Industry 164
 
  • J.P. Edelen, D.T. Abell, D.L. Bruhwiler, S.J. Coleman, N.M. Cook, A. Diaw, J.A. Einstein-Curtis, C.C. Hall, M.C. Kilpatrick, B. Nash, I.V. Pogorelov
    RadiaSoft LLC, Boulder, Colorado, USA
  • K.A. Brown
    BNL, Upton, New York, USA
  • S. Calder
    ORNL RAD, Oak Ridge, Tennessee, USA
  • A.L. Edelen, B.D. O’Shea, R.J. Roussel
    SLAC, Menlo Park, California, USA
  • C.M. Hoffmann
    ORNL, Oak Ridge, Tennessee, USA
  • E.-C. Huang
    LANL, Los Alamos, New Mexico, USA
  • P. Piot
    Northern Illinois University, DeKalb, Illinois, USA
  • C. Tennant
    JLab, Newport News, Virginia, USA
 
  It is clear from nu­mer­ous re­cent com­mu­nity re­ports, pa­pers, and pro­pos­als that ma­chine learn­ing is of tremen­dous in­ter­est for par­ti­cle ac­cel­er­a­tor ap­pli­ca­tions. The quickly evolv­ing land­scape con­tin­ues to grow in both the breadth and depth of ap­pli­ca­tions in­clud­ing physics mod­el­ing, anom­aly de­tec­tion, con­trols, di­ag­nos­tics, and analy­sis. Con­se­quently, lab­o­ra­to­ries, uni­ver­si­ties, and com­pa­nies across the globe have es­tab­lished ded­i­cated ma­chine learn­ing (ML) and data-sci­ence ef­forts aim­ing to make use of these new state-of-the-art tools. The cur­rent fund­ing en­vi­ron­ment in the U.S. is struc­tured in a way that sup­ports spe­cific ap­pli­ca­tion spaces rather than larger col­lab­o­ra­tion on com­mu­nity soft­ware. Here, we dis­cuss the ex­ist­ing col­lab­o­ra­tion bot­tle­necks and how a shift in the fund­ing en­vi­ron­ment, and how we de­velop col­lab­o­ra­tive tools, can help fuel the next wave of ML ad­vance­ments for par­ti­cle ac­cel­er­a­tors.  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA55  
About • Received ※ 10 August 2022 — Revised ※ 11 August 2022 — Accepted ※ 22 August 2022 — Issue date ※ 01 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPA76 Wakefield Modeling in Sub-THz Dielectric-Lined Waveguides 218
 
  • C.L. Phillips, B. Leung, X. Lu, P. Piot
    Northern Illinois University, DeKalb, Illinois, USA
 
  Di­elec­tric-lined wave­guides have been ex­ten­sively stud­ied to po­ten­tially sup­port high-gra­di­ent ac­cel­er­a­tion in beam-dri­ven di­elec­tric wake­field ac­cel­er­a­tion (DWFA) and for beam ma­nip­u­la­tions. In this paper, we in­ves­ti­gate the wake­field gen­er­ated by a rel­a­tivis­tic bunch pass­ing through a di­elec­tric wave­guide with dif­fer­ent trans­verse sec­tions. We specif­i­cally con­sider the case of a struc­ture con­sist­ing of two di­elec­tric slabs, along with rec­tan­gu­lar and square struc­tures. Nu­mer­i­cal sim­u­la­tions per­formed with the fine-dif­fer­ence time-do­main of the WarpX pro­gram re­veal some in­ter­est­ing fea­tures of the trans­verse wake and a pos­si­ble ex­per­i­ment at the Ar­gonne Wake­field Ac­cel­er­a­tor (AWA) is pro­posed.  
poster icon Poster MOPA76 [1.294 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA76  
About • Received ※ 12 August 2022 — Accepted ※ 13 August 2022 — Issue date ※ 12 September 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPA82 Transverse Stability in an Alternating Symmetry Planar Dielectric Wakefield Structure 519
 
  • W.J. Lynn, G. Andonian, N. Majernik, S.M. OTool, J.B. Rosenzweig
    UCLA, Los Angeles, California, USA
  • D.S. Doran, S.Y. Kim, J.F. Power, E.E. Wisniewski
    ANL, Lemont, Illinois, USA
  • P. Piot
    Northern Illinois University, DeKalb, Illinois, USA
 
  Funding: DE-SC0017648 - AWA.
Di­elec­tric Wake­field Ac­cel­er­a­tion (DWA) is a promis­ing tech­nique for re­al­iz­ing the next gen­er­a­tion of lin­ear col­lid­ers. It pro­vides ac­cess to sig­nif­i­cantly higher ac­cel­er­at­ing gra­di­ents than tra­di­tional ra­dio-fre­quency cav­i­ties. One im­ped­i­ment to re­al­iz­ing a DWA-pow­ered ac­cel­er­a­tor is the issue of the trans­verse sta­bil­ity of the beams within the di­elec­tric struc­ture due to short-range wake­fields. These short-range wake­fields have a ten­dency to in­duce a phe­nom­e­non known as sin­gle-bunch beam breakup, which acts as its name im­plies and de­stroys the rel­e­vant beam. We at­tempt to solve this issue by lever­ag­ing the quadru­pole mode ex­cited in a pla­nar di­elec­tric struc­ture and then al­ter­nat­ing the ori­en­ta­tion of said struc­ture to turn an un­sta­ble sys­tem into a sta­ble one. We ex­am­ine this issue com­pu­ta­tion­ally to de­ter­mine the lim­its of sta­bil­ity and based on those sim­u­la­tions de­scribe a fu­ture ex­per­i­men­tal re­al­iza­tion of this strat­egy.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-TUPA82  
About • Received ※ 02 August 2022 — Revised ※ 11 August 2022 — Accepted ※ 12 August 2022 — Issue date ※ 30 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPA83 Derivative-Free Optimization of Multipole Fits to Experimental Wakefield Data 523
 
  • N. Majernik, G. Andonian, W.J. Lynn, J.B. Rosenzweig
    UCLA, Los Angeles, California, USA
  • P. Piot, T. Xu
    Northern Illinois University, DeKalb, Illinois, USA
 
  Funding: Department of Energy DE-SC0017648.
A method to de­duce the trans­verse self-wake­fields act­ing on a beam, based only on screen im­ages, is in­tro­duced. By em­ploy­ing de­riv­a­tive-free op­ti­miza­tion, the rel­a­tively high-di­men­sional pa­ra­me­ter space can be ef­fi­ciently ex­plored to de­ter­mine the mul­ti­pole com­po­nents up to the de­sired order. This tech­nique com­ple­ments sim­u­la­tions, which are able to di­rectly infer the wake­field com­po­si­tion. It is ap­plied to rep­re­sen­ta­tive sim­u­la­tion re­sults as a bench­mark and also ap­plied to ex­per­i­men­tal data on skew wake ob­ser­va­tions from di­elec­tric slab struc­tures.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-TUPA83  
About • Received ※ 02 August 2022 — Revised ※ 21 August 2022 — Accepted ※ 26 August 2022 — Issue date ※ 11 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEXD5 Benchmarking Simulation for AWA Drive Linac and Emittance Exchange Beamline Using OPAL, GPT, and Impact-T 552
 
  • S.Y. Kim, G. Chen, D.S. Doran, G. Ha, W. Liu, J.G. Power, E.E. Wisniewski
    ANL, Lemont, Illinois, USA
  • E.A. Frame, P. Piot
    Northern Illinois University, DeKalb, Illinois, USA
 
  At the Ar­gonne Wake­field Ac­cel­er­a­tor (AWA) fa­cil­ity, par­ti­cle-track­ing sim­u­la­tions have been crit­i­cal to guid­ing beam-dy­namic ex­per­i­ments, e.g., for var­i­ous beam ma­nip­u­la­tions using an avail­able emit­tance-ex­change beam­line (EEX). The unique beam­line avail­able at AWA pro­vide a test case to per­form in-depth com­par­i­son be­tween dif­fer­ent par­ti­cle-track­ing pro­grams in­clud­ing col­lec­tive ef­fects such as space-charge force and co­her­ent syn­chro­tron ra­di­a­tion. In this study, using AWA elec­tron in­jec­tor and emit­tance ex­change beam­line, we com­pare the sim­u­la­tions re­sults ob­tained by GPT, OPAL, and Im­pact-T beam-dy­nam­ics pro­grams. We will specif­i­cally re­port on con­ver­gence test as a func­tion of pa­ra­me­ters that con­trols the un­der­ly­ing al­go­rithms.  
slides icon Slides WEXD5 [1.847 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-WEXD5  
About • Received ※ 03 August 2022 — Revised ※ 06 August 2022 — Accepted ※ 11 August 2022 — Issue date ※ 22 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FRXD1
Demonstration of Optical Stochastic Cooling in an Electron Storage Ring  
 
  • J.D. Jarvis, D.R. Broemmelsiek, K. Carlson, D.R. Edstrom, V.A. Lebedev, S. Nagaitsev, H. Piekarz, A.L. Romanov, J. Ruan, J.K. Santucci, G. Stancari, A. Valishev
    Fermilab, Batavia, Illinois, USA
  • S. Chattopadhyay, A.J. Dick, P. Piot
    Northern Illinois University, DeKalb, Illinois, USA
  • I. Lobach
    University of Chicago, Chicago, Illinois, USA
 
  Op­ti­cal sto­chas­tic cool­ing (OSC), pro­posed nearly thirty years ago, re­places the con­ven­tional mi­crowave el­e­ments of sto­chas­tic cool­ing (SC) with op­ti­cal-fre­quency analogs, such as un­du­la­tors, op­ti­cal lenses and op­ti­cal am­pli­fiers. Here we dis­cuss the first ex­per­i­men­tal ob­ser­va­tion of OSC, which was per­formed at the Fermi Na­tional Ac­cel­er­a­tor Lab­o­ra­tory’s In­te­grable Op­tics Test Ac­cel­er­a­tor (IOTA) with 100-MeV elec­trons and a ra­di­a­tion wave­length of 950 nm. The ex­per­i­ment em­ployed a non-am­pli­fied con­fig­u­ra­tion of OSC and achieved a lon­gi­tu­di­nal damp­ing rate close to one order of mag­ni­tude larger than the beam’s nat­ural damp­ing due to syn­chro­tron ra­di­a­tion. The in­te­grated sys­tem demon­strated sub-fem­tosec­ond sta­bil­ity and a band­width of ~20 THz, a fac­tor of ~2000-times higher than con­ven­tional mi­crowave SC sys­tems. Cou­pling to the trans­verse planes en­abled si­mul­ta­ne­ous cool­ing of the beam in all de­grees of free­dom. This first demon­stra­tion of SC at op­ti­cal fre­quen­cies serves as a foun­da­tion for more ad­vanced ex­per­i­ments with high-gain op­ti­cal am­pli­fi­ca­tion and ad­vances op­por­tu­ni­ties for fu­ture op­er­a­tional OSC sys­tems at col­lid­ers and other ac­cel­er­a­tor fa­cil­i­ties.  
slides icon Slides FRXD1 [32.041 MB]  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)