Paper | Title | Page |
---|---|---|
WEPA74 | Characterization of Fully Coupled Linear Optics with Turn-by-Turn Data | 805 |
|
||
Funding: This research used resources of the NSLS-II, a U.S. DOE Office of Science User Facility operated for the DOE Office of Science by Brookhaven National Laboratory under Contract No. DE-SC0012704. In the future diffraction-limited light source rings, fully coupled linear optics to generate round beams is preferable. While machine tune approaching to linear difference resonances, small random errors, such as quadrupole rolls, can result in fully coupled optics. Consequently, some uncertainty exists in such optics due to random errors distributions. Given beam position monitors turn-by-turn readings, the harmonic analysis method was used to characterize the coupled Ripken Twiss parameters. |
||
Poster WEPA74 [0.889 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-WEPA74 | |
About • | Received ※ 25 July 2022 — Revised ※ 30 July 2022 — Accepted ※ 08 August 2022 — Issue date ※ 19 August 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPA81 | Time-Resolved Experiments at NSLS II: Motivation and Machine Capabilities | 826 |
|
||
NSLS-II is a 3-GeV third-generation synchrotron light source at Brookhaven National Lab. The storage ring has been in routine operations for over six years and hosts 28 operating beamlines. The storage ring performance has continuously improved, including 500-mA with limited insertion devices closed, and routine 400-mA top off operation with 90% uniform filling pattern. Recently, we are exploring different operation modes, uniform multi single-bunch mode, and camshaft mode with a high single-bunch charge, to support timing-resolved user experiments. In this paper, we explore the potential for scientific experiments using the pulsed nature of the NSLS, summarize the user requirements on the beam parameters and the progress of accelerator studies. | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-WEPA81 | |
About • | Received ※ 04 August 2022 — Revised ※ 12 August 2022 — Accepted ※ 13 August 2022 — Issue date ※ 22 August 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |