Author: Sannibale, A.
Paper Title Page
TUYE4 Machine Learning for Anomaly Detection and Classification in Particle Accelerators 311
 
  • I. Lobach, M. Borland, K.C. Harkay, N. Kuklev, A. Sannibale, Y. Sun
    ANL, Lemont, Illinois, USA
 
  Funding: The work is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.
We ex­plore the pos­si­bil­ity of using a Ma­chine Learn­ing (ML) al­go­rithm to iden­tify the source of oc­ca­sional poor per­for­mance of the Par­ti­cle Ac­cu­mu­la­tor Ring (PAR) and the Linac-To-PAR (LTP) trans­port line, which are parts of the in­jec­tor com­plex of the Ad­vanced Pho­ton Source (APS) at Ar­gonne Na­tional Lab. The cause of re­duced in­jec­tion or ex­trac­tion ef­fi­cien­cies may be as sim­ple as one pa­ra­me­ter being out of range. Still, it may take an ex­pert con­sid­er­able time to no­tice it, whereas a well-trained ML model can point at it in­stantly. In ad­di­tion, a ma­chine ex­pert might not be im­me­di­ately avail­able when a prob­lem oc­curs. There­fore, we began by fo­cus­ing on such sin­gle-pa­ra­me­ter anom­alies. The train­ing data were gen­er­ated by cre­at­ing con­trolled per­tur­ba­tions of sev­eral pa­ra­me­ters of PAR and LTP one-by-one, while con­tin­u­ously log­ging all avail­able process vari­ables. Then, sev­eral ML clas­si­fiers were trained to rec­og­nize cer­tain sig­na­tures in the logged data and link them to the sources of poor ma­chine per­for­mance. Pos­si­ble ap­pli­ca­tions of au­toen­coders and vari­a­tional au­toen­coders for un­su­per­vised anom­aly de­tec­tion and for anom­aly clus­ter­ing were con­sid­ered as well.
 
slides icon Slides TUYE4 [9.534 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-TUYE4  
About • Received ※ 03 August 2022 — Revised ※ 07 August 2022 — Accepted ※ 08 August 2022 — Issue date ※ 28 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPA29 Machine Learning for Predicting Power Supply Trips in Storage Rings 413
 
  • I. Lobach, M. Borland, G.I. Fystro, A. Sannibale, Y. Sun
    ANL, Lemont, Illinois, USA
  • A. Diaw, J.P. Edelen
    RadiaSoft LLC, Boulder, Colorado, USA
 
  Funding: The work is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.
In the Ad­vanced Pho­ton Source (APS) stor­age ring at Ar­gonne Na­tional Lab, trips in the mag­net power sup­plies (PSs) lead to a com­plete elec­tron beam loss a few times a year. This re­sults in un­ex­pected in­ter­rup­tions of the users’ ex­per­i­ments. In this con­tri­bu­tion, we in­ves­ti­gate the his­tor­i­cal data for the last two decades to find pre­cur­sors for the PS trips that could pro­vide an ad­vance no­tice for fu­ture trips and allow some pre­ven­tive ac­tion by the ring op­er­a­tor or by the PS main­te­nance team. Var­i­ous un­su­per­vised anom­aly de­tec­tion mod­els can be trained on the vast amounts of avail­able ref­er­ence data from the beam­time pe­ri­ods that ended with an in­ten­tional beam dump. We find that such mod­els can some­times de­tect trip pre­cur­sors in PS cur­rents, volt­ages, and in the tem­per­a­tures of mag­nets, ca­pac­i­tors and tran­sis­tors (com­po­nents of PSs).
 
poster icon Poster TUPA29 [2.116 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-TUPA29  
About • Received ※ 03 August 2022 — Revised ※ 07 August 2022 — Accepted ※ 10 August 2022 — Issue date ※ 18 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)