Author: Tran, A.D.
Paper Title Page
MOPA89 RHIC Electron Beam Cooling Analysis Using Principle Component and Autoencoder Analysis 260
 
  • A.D. Tran, Y. Hao
    FRIB, East Lansing, Michigan, USA
  • X. Gu
    BNL, Upton, New York, USA
 
  Funding: Work supported by the US Department of Energy under contract No. DE-AC02-98CH10886.
Prin­ci­pal com­po­nent analy­sis and au­toen­coder analy­sis were used to an­a­lyze the ex­per­i­men­tal data of RHIC op­er­a­tion with low en­ergy RHIC elec­tron cool­ing (LEReC). This is un­su­per­vised learn­ing which in­cludes elec­tron beam set­tings and ob­serv­able dur­ing op­er­a­tion. Both analy­ses were used to gauge the di­men­sional re­ducibil­ity of the data and to un­der­stand which fea­tures are im­por­tant to beam cool­ing.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA89  
About • Received ※ 02 August 2022 — Revised ※ 05 August 2022 — Accepted ※ 06 August 2022 — Issue date ※ 12 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPA90 Relating Initial Distribution to Beam Loss on the Front End of a Heavy-Ion Linac Using Machine Learning 263
 
  • A.D. Tran, Y. Hao
    FRIB, East Lansing, Michigan, USA
  • J.L. Martinez Marin, B. Mustapha
    ANL, Lemont, Illinois, USA
 
  Funding: This work was supported by a sub-reward from Argonne National Laboratory and supported by the U.S. Department of Energy, under Contract No. DE-AC02-06CH11357.
This work demon­strates using a Neural Net­work and a Gauss­ian Process to model the ATLAS front-end. Var­i­ous neural net­work ar­chi­tec­tures were cre­ated and trained on the ma­chine set­tings and out­puts to model the phase space pro­jec­tions. The model was then trained on a dataset, with non-lin­ear dis­tor­tion, to gauge the trans­fer­abil­ity of the model from sim­u­la­tion to ma­chine.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA90  
About • Received ※ 02 August 2022 — Revised ※ 05 August 2022 — Accepted ※ 06 August 2022 — Issue date ※ 11 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)