Author: Zhao, S.
Paper Title Page
MOPA83 Automation of Superconducting Cavity and Superconducting Magnet Operation for FRIB 239
 
  • W. Chang, Y. Choi, X.-J. Du, W. Hartung, S.H. Kim, T. Konomi, S.R. Kunjir, H. Nguyen, J.T. Popielarski, K. Saito, T. Xu, S. Zhao
    FRIB, East Lansing, Michigan, USA
 
  The superconducting (SC) driver linac for the Facility for Rare Isotope Beams (FRIB) is a heavy-ion accelerator that accelerate ions to 200 MeV per nucleon. The linac has 46 cryomodules that contain 324 SC cavities and 69 SC solenoid packages. For linac operation with high availability and high reliability, automation is essential for such tasks as fast device turn-on/off, fast recovery from trips, and real-time monitoring of operational performance. We have implemented several automation algorithms, including one-button turn-on/off of SC cavities and SC magnets; automated degaussing of SC solenoids; mitigation of field emission-induced multipacting during recovery from cavity trips; and real-time monitoring of the cavity field level calibration. The design, development, and operating experience with automation will be presented.  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA83  
About • Received ※ 02 August 2022 — Revised ※ 03 August 2022 — Accepted ※ 06 August 2022 — Issue date ※ 26 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPA84 Superconducting Cavity Commissioning for the FRIB Linac 242
 
  • W. Chang, W. Hartung, S.H. Kim, T. Konomi, S.R. Kunjir, J.T. Popielarski, K. Saito, T. Xu, S. Zhao
    FRIB, East Lansing, Michigan, USA
 
  The superconducting driver linac for the Facility for Rare Isotope Beams (FRIB) is a heavy ion accelerator that has 46 cryomodules with 324 superconducting (SC) cavities that accelerate ions to 200 MeV per nucleon. Linac commissioning was done in multiple phases, in parallel with technical installation. Ion beam have now been accelerated to the design energy through the full linac; rare isotopes were first produced in December 2021; and the first user experiment was completed in May 2022. All cryomodules were successfully commissioned. Cryomodule commissioning included establishing the desired cavity fields, measuring field emission X-rays, optimizing the tuner control loops, measuring the cavity dynamic heat load, and confirming the low-level RF control (amplitude and phase stability). Results on cryomodule commissioning and cryomodule performance will be presented.  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA84  
About • Received ※ 13 July 2022 — Revised ※ 02 August 2022 — Accepted ※ 13 August 2022 — Issue date ※ 05 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPA88 FRIB and UEM LLRF Controller Upgrade 256
 
  • S.R. Kunjir, E. Bernal, D.G. Morris, S. Zhao
    FRIB, East Lansing, Michigan, USA
  • C.-Y. Ruan
    MSU, East Lansing, Michigan, USA
 
  Funding: Supported by the U.S. DOE Office of Science under Cooperative Agreement DE-SC0000661, the State of Michigan, Michigan State University and U.S. National Science Foundation grant DMR-1625181.
The Facility for Rare Isotope Beams (FRIB) is developing a 644 MHz superconducting (SC) cavity for a future upgrade project. The current low level radio frequency (LLRF) controller at FRIB is not able to operate at 644 MHz. The Ultrafast Electron Microscope (UEM) laboratory within the Department of Physics at Michigan State University designed an LLRF controller based on analog RF components to operate a 1.013 GHz room temperature (RT) cavity. With requirements for improved stability, performance and user controls there was a need to upgrade the analog LLRF controller. The FRIB radio frequency (RF) group designed, developed and fabricated a new digital LLRF controller, with high-speed serial interface between system on chip field programmable gate array and fast data converters and capable of high frequency direct sampling, to meet the requirements of 644 MHz SC cavity and 1.013 GHz UEM RT cavity. This paper gives an overview of the upgraded digital LLRF controller, its features, improvements and preliminary test results.
 
poster icon Poster MOPA88 [2.818 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA88  
About • Received ※ 01 August 2022 — Revised ※ 03 August 2022 — Accepted ※ 04 August 2022 — Issue date ※ 16 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)