Paper | Title | Other Keywords | Page |
---|---|---|---|
MOPA21 | Effect of Electropolishing on Nitrogen Doped and Undoped Niobium Surfaces | cavity, niobium, SRF, superconducting-RF | 93 |
|
|||
Cold electropolishing (EP) of a nitrogen-doped (N-doped) niobium (Nb) superconducting RF (SRF) cavity was found to improve its quality factor. In order to understand the effect of EP temperature on N-doped and undoped surfaces, a systematic EP study was conducted with 2/0 N-doped and heat-treated Nb samples in a beaker. The Nb samples were electropolished at different surface temperatures ranging from 0 to 42 C. The results showed that the doped surface was susceptible to the sample temperature during EP. EP resulted in the surface pitting on the doped samples where the number density of pits increased at a higher temperature. The surface results were compared with the surface of cutouts from a 9-cell cavity which was 2/0 N-doped and electropolished. This paper shows de-tailed surface features of the N-doped and undoped Nb surfaces electropolished at different temperatures. | |||
DOI • | reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA21 | ||
About • | Received ※ 20 July 2022 — Revised ※ 24 July 2022 — Accepted ※ 09 August 2022 — Issue date ※ 11 August 2022 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUZD3 | Ultimate Limits of Future Colliders | collider, luminosity, acceleration, electron | 321 |
|
|||
With seven operational colliders in the world and two under construction, the international particle physics community not only actively explores options for the next facilities for detailed studies of the Higgs/electroweak physics and beyond-the-LHC energy frontier, but seeks a clear picture of the limits of the colliding beams method. In this paper, we try to consolidate various recent efforts in identifying physics limits of colliders in conjunction with societal sustainability, and share our thoughts about the perspective of reaching the ultimate quantum limit. | |||
![]() |
Slides TUZD3 [3.848 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-TUZD3 | ||
About • | Received ※ 25 July 2022 — Revised ※ 03 August 2022 — Accepted ※ 10 August 2022 — Issue date ※ 30 August 2022 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPA70 | Tensor Decomposition for the Compression and Analysis of 10 kHz BPM Data | storage-ring, status, monitoring, real-time | 792 |
|
|||
Funding: This work is supported in part by the U.S. Department of Energy (DOE) under contract No. DE-SC0012704. In the NSLS-II storage ring during user operation, fast-acquisition (FA) 10-kHz BPM data are collected, and their spectral properties are analyzed. Various periodograms and spectral peaks are being provided every minute, and they are very useful in identifying any changes in the orbit. Unfortunately, because of the large amount of data, only several numbers are being continually archived for later study, and the full raw data are saved only by hand when needed. We are developing methods utilizing tensor decomposition techniques to save and analyze the FA data; this paper reports the current status of this project. |
|||
DOI • | reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-WEPA70 | ||
About • | Received ※ 02 August 2022 — Revised ※ 08 August 2022 — Accepted ※ 10 August 2022 — Issue date ※ 28 September 2022 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||