Paper | Title | Other Keywords | Page |
---|---|---|---|
MOYD4 | Model Parameters Determination in EIC Strong-Strong Simulation | simulation, electron, proton, emittance | 9 |
|
|||
The ion beam is sensitive to numerical noise in the strong-strong simulation of the Electron-Ion Collider (EIC). This paper discusses the impact of model parameters — macro particles, transverse grids and longitudinal slices — on beam size evolution in PIC based strong-strong simulation. It will help us to understand the emittance growth in strong-strong simulation. | |||
![]() |
Slides MOYD4 [0.849 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOYD4 | ||
About • | Received ※ 02 August 2022 — Revised ※ 03 August 2022 — Accepted ※ 10 August 2022 — Issue date ※ 11 August 2022 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUZD1 | The Electron-Positron Future Circular Collider (FCC-ee) | operation, luminosity, electron, booster | 315 |
|
|||
Funding: Work supported by the European Union’s H2020 Framework Programme under grant agreement no.~951754 (FCCIS). The Future Circular electron-positron Collider (FCC-ee) is aimed at studying the Z and W bosons, the Higgs, and top quark with extremely high luminosity and good energy efficiency. Responding to a request from the 2020 Update of the European Strategy for Particle Physics, in 2021 the CERN Council has launched the FCC Feasibility Study to examine the detailed implementation of such a collider. This FCC Feasibility Study will be completed by the end of 2025 and its results be presented to the next Update of the European Strategy for Particle Physics expected in 2026/27. |
|||
![]() |
Slides TUZD1 [10.072 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-TUZD1 | ||
About • | Received ※ 03 August 2022 — Revised ※ 11 August 2022 — Accepted ※ 21 August 2022 — Issue date ※ 02 September 2022 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUZD3 | Ultimate Limits of Future Colliders | luminosity, acceleration, electron, factory | 321 |
|
|||
With seven operational colliders in the world and two under construction, the international particle physics community not only actively explores options for the next facilities for detailed studies of the Higgs/electroweak physics and beyond-the-LHC energy frontier, but seeks a clear picture of the limits of the colliding beams method. In this paper, we try to consolidate various recent efforts in identifying physics limits of colliders in conjunction with societal sustainability, and share our thoughts about the perspective of reaching the ultimate quantum limit. | |||
![]() |
Slides TUZD3 [3.848 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-TUZD3 | ||
About • | Received ※ 25 July 2022 — Revised ※ 03 August 2022 — Accepted ※ 10 August 2022 — Issue date ※ 30 August 2022 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUZD5 | Experience and Challenges with Electron Cooling of Colliding Ion Beams in RHIC | electron, operation, cathode, emittance | 325 |
|
|||
Funding: Work supported by the U.S. Department of Energy. Electron cooling of ion beams employing rf-accelerated electron bunches was successfully used for the RHIC physics program in 2020 and 2021 and was essential in achieving the required luminosity goals. This presentation will summarize experience and challenges with electron cooling of colliding ion beams in RHIC. We also outline ongoing studies using rf-based electron cooler LEReC. |
|||
![]() |
Slides TUZD5 [1.373 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-TUZD5 | ||
About • | Received ※ 02 August 2022 — Accepted ※ 04 August 2022 — Issue date ※ 14 September 2022 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEYD3 | Positron Acceleration in Linear, Moderately Non-Linear and Non-Linear Plasma Wakefields | positron, plasma, emittance, electron | 560 |
|
|||
Accelerating particles to high energies with high efficiency and beam quality is crucial in developing accelerator technologies. The plasma acceleration technique, providing unprecedented high gradients, is considered as a promising future technology. While important progress has been made in plasma-based electron acceleration in recent years, identifying a reliable acceleration technique for the positron counterpart would pave the way to a linear e+e− collider for high-energy physics applications. In this work, we show further studies of positron beam quality in moderately non-linear (MNL)* plasma wakefields. With a positron bunch of initial energy 1 GeV, emittance preservation can be achieved in optimised scenarios at 2.38 mm’mrad. In parallel, asymmetric beam collisions at the interaction point (IP) are studied to evaluate the current luminosity reach and provide insight to improvements required for positron acceleration in plasma. It is necessary to scale down the emittance of the positron bunch. In the MNL regime, a positron beam with 238 ’m’mrad level emittance implies compromise in charge or necessity for ultra-short bunches.
* "Efficiency and beam quality for positron acceleration in loaded plasma wakefields",C. S. Hue, G. J. Cao, et.al Phys. Rev. Research 3, 043063 |
|||
![]() |
Slides WEYD3 [3.635 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-WEYD3 | ||
About • | Received ※ 01 August 2022 — Revised ※ 09 August 2022 — Accepted ※ 10 August 2022 — Issue date ※ 24 August 2022 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEYD6 | Design of a PIP-II Era Mu2e Experiment | proton, target, solenoid, experiment | 568 |
|
|||
We propose a design of an upgraded Mu2e experiment for the future Fermilab PIP-II era based on the muon collider front end. The consensus is that such an upgrade should provide a factor of 10 increase in the rate of stopping muons in the experimental target. The current Mu2e design is optimized for 8 kW of protons at 8 GeV. The PIP-II upgrade project is a 250-meter-long CW linac capable of accelerating a 2-mA proton beam to a kinetic energy of 800 MeV (total power 1.6 MW). This would significantly improve the Fermilab proton source to enable next-generation intensity frontier experiments. But using this 800 MeV beam poses challenges to the Mu2E experiment. Bright muon beams generated from sources designed for muon collider and neutrino factory facilities have been shown to generate two orders of magnitude more muons per proton than the current Mu2e production target and solenoid. In contrast to the current Mu2e, the muon collider design has forward-production of muons from the target. | |||
![]() |
Slides WEYD6 [1.937 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-WEYD6 | ||
About • | Received ※ 06 August 2022 — Revised ※ 11 August 2022 — Accepted ※ 12 August 2022 — Issue date ※ 09 October 2022 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEZD1 | ARDAP’s Perspective on Accelerator Technology R&D in the U.S. | operation, electron, laser, controls | 592 |
|
|||
DOE operates several particle accelerator facilities and is planning several new forward-leaning accelerator facilities over the next decade or two. These new facilities will focus on discovery science research and fulfilling other core DOE missions. Near and mid-term examples include PIP-II and FACET-II (for High Energy Physics); LCLS-II, SNS-PPU, APS-U, and ALS-U (for Basic Energy Sciences); FRIB (for Nuclear Physics); NSTX-U and MPEX (for Fusion Energy Sciences); and Scorpius (for NNSA). Longer-term examples may include future colliders, the SNS-STS, LCLS-II HE, and EIC. In addition to domestic facilities, DOE’s Office of Science (SC) also contributes to several international efforts. Together, these new facilities constitute a multibillion-dollar construction and operations investment. To be successful, they will require advances in state-of-the-art accelerator technologies. They will also require the National Laboratories to procure a variety of accelerator components. This paper summarizes how DOE is working to address these upcoming R&D and accelerator component production needs through its new office of Accelerator R&D and Production (ARDAP). | |||
![]() |
Slides WEZD1 [2.310 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-WEZD1 | ||
About • | Received ※ 05 August 2022 — Revised ※ 09 August 2022 — Accepted ※ 11 August 2022 — Issue date ※ 19 August 2022 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEZD6 | Manufacturing the Harmonic Kicker Cavity Prototype for the Electron-Ion Collider | cavity, kicker, electron, MMI | 601 |
|
|||
Funding: This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under contract DE-AC05-06OR23177 High-bunch-frequency beam-separation schemes, such as the injection scheme proposed for the Rapid Cycling Synchrotron at the Electron-Ion Collider, demand rise and fall times an order of magnitude below what can realistically be accomplished with a stripline kicker. Nanosecond-time-scale kick waveforms can instead be obtained by Fourier synthesis in a harmonically resonant quarter-wave radio-frequency cavity which is optimized for high shunt impedance. Originally developed for the Jefferson Lab Electron-Ion Collider (JLEIC) Circulator Cooler Ring, a hypothetical 11-pass ring driven by an energy-recovery linac at Jefferson Lab, our high-power prototype of such a harmonic kicker cavity, which operates at five modes at the same time, will demonstrate the viability of this concept with a beam test at Jefferson Lab. As the geometry of the cavity, tight mechanical tolerances, and number of ports complicate the design and manufacturing process, special care must be given to the order of the manufacturing steps. We present our experiences with the manufacturability of the present design, lessons learned, and first RF test results from the prototype. |
|||
![]() |
Slides WEZD6 [12.312 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-WEZD6 | ||
About • | Received ※ 04 August 2022 — Revised ※ 05 August 2022 — Accepted ※ 18 August 2022 — Issue date ※ 31 August 2022 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPA15 | High-Field Design Concept for Second Interaction Region of the Electron-Ion Collider | electron, luminosity, proton, detector | 648 |
|
|||
Funding: Contract No. DE-AC05-06OR23177, Contract No. DE-SC0012704 and Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. Efficient realization of the scientific potential of the Electron Ion Collider (EIC) calls for addition of a future second Interaction Region (2nd IR) and a detector in the RHIC IR8 region after the EIC project completion. The second IR and detector are needed to independently cross-check the results of the first detector, and to provide measurements with complementary acceptance. The available space in the existing RHIC IR8 and maximum fields achievable with NbTi superconducting magnet technology impose constraints on the 2nd IR performance. Since commissioning of the 2nd IR is envisioned in a few years after the first IR, such a long time frame allows for more R&D on the Nb3Sn magnet technology. Thus, it could provide a potential alternative technology choice for the 2nd IR magnets. Presently, we are exploring its potential benefits for the 2nd IR performance, such as improvement of the luminosity and acceptance, and are also assessing the technical risks associated with use of Nb3Sn magnets. In this paper, we present the current progress of this work. |
|||
DOI • | reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-WEPA15 | ||
About • | Received ※ 04 August 2022 — Revised ※ 11 August 2022 — Accepted ※ 17 August 2022 — Issue date ※ 31 August 2022 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPA34 | Transfer Maps in the Hard-Edge Limit of Quadrupole and Bend Magnets Fringe Fields | quadrupole, dipole, space-charge, linear-dynamics | 705 |
|
|||
Funding: This work has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. Beam dynamics of charged particles in the fringe field of a quadrupole and a dipole magnet is considered. An effective method for solving symplectic Lie map exp(:f:) in such cases has been developed. A precise analytic solution for nonlinear transverse beam dynamics in a quadrupole magnet with hard-edge fringe field has been obtained. The method of Lie map calculation considered here can be applied for other magnets and for soft edge type of fringe field. |
|||
DOI • | reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-WEPA34 | ||
About • | Received ※ 23 July 2022 — Revised ※ 29 July 2022 — Accepted ※ 07 August 2022 — Issue date ※ 12 August 2022 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPA36 | Emittance Growth Due to RF Phase Noise in Crab Cavities | cavity, emittance, simulation, betatron | 708 |
|
|||
The Electron-Ion Collider (EIC) incorporates beam crabbing to recover geometric luminosity loss from the nonzero crossing angle at the interaction point (IP). It is well-known that crab cavity imperfections can cause growth of colliding beam emittances, thus degrading collider performance. Here we report a particle tracking study to quantify these effects. Presently the study is focused on crab cavity RF phase noise. Simulations were carried out using Bmad. Dependence of emittance growth on phase noise level was obtained which could be used for developing crab cavity phase control specifications. We also benchmarked these simulations with theory. | |||
DOI • | reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-WEPA36 | ||
About • | Received ※ 02 August 2022 — Revised ※ 07 August 2022 — Accepted ※ 12 August 2022 — Issue date ※ 02 September 2022 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPA50 | Initial Development of a High-Voltage Pulse Generator for a Short-Pulse Kicker | kicker, flattop, high-voltage, operation | 745 |
|
|||
Funding: This work was funded by a DOE SBIR (DE-SC0021470). The future Electron Ion Collider, to be located at Brookhaven National Laboratory (BNL), will require a new short-pulse stripline kicker for the 150 MeV energy recovery LINAC. The pulse generator must produce ±50 kV pulses with widths less than 38 ns into a 50° kicker load and with low jitter. The power system must be highly reliable and robust to potential faults. Eagle Harbor Technologies (EHT), Inc. is leveraging our previous experience developing inductive adders to produce a high-voltage pulse generator that can meet the needs of the BNL kickers. In this program, EHT designed a single inductive adder stage and demonstrated the challenging pulse characteristics including fast rise and fall times, low jitter, and flattop stability while operating at the full current (1 kA). EHT will present the development status and output waveforms. |
|||
![]() |
Poster WEPA50 [1.118 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-WEPA50 | ||
About • | Received ※ 01 August 2022 — Revised ※ 08 August 2022 — Accepted ※ 10 August 2022 — Issue date ※ 12 August 2022 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPA83 | Extended Soft-Gaussian Code for Beam-Beam Simulations | simulation, electron, electromagnetic-fields, proton | 830 |
|
|||
Large ion beam emittance growth is observed in strong-strong beam-beam simulations for the Electron-Ion Collider (EIC). As we know, the Particle-In-Cell (PIC) solver is subject to numerical noises. As an alternative approach, an extended soft-Gaussian code is developed with help of Hermite polynomials in this paper. The correlation between the horizontal and the vertical coordinates of macro-particles is considered. The 3rd order center moments are also included in the beam-beam force. This code could be used as a cross check tool of PIC based strong-strong simulation. | |||
![]() |
Poster WEPA83 [0.440 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-WEPA83 | ||
About • | Received ※ 02 August 2022 — Revised ※ 05 August 2022 — Accepted ※ 08 August 2022 — Issue date ※ 24 August 2022 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||