Keyword: detector
Paper Title Other Keywords Page
MOYE4 Diagnoses and Repair of a Crack in the Drift Tube LINAC Accelerating Structure at LANSCE vacuum, experiment, linac, drift-tube-linac 19
 
  • W.C. Barkley, D.A. Bingham, M.J. Borden, J.A. Burkhart, D.J. Evans, J.T.M. Lyles, J.P. Montross, J.F. O’Hara, B.J. Roller, M. Sanchez Barrueta
    LANL, Los Alamos, New Mexico, USA
 
  Funding: Work supported by the United States Department of Energy, National Nuclear Security Agency, under contract DE-AC52-06NA25396
Many were per­plexed at the in­abil­ity of Mod­ule 3 at LAN­SCE to op­er­ate at peak power and duty fac­tor while run­ning pro­duc­tion beam. Dur­ing the 2018 pro­duc­tion run, the DTL began to in­ter­mit­tently break down, lead­ing to a se­ries of root cause in­ves­ti­ga­tions. These analy­ses in­cluded elim­i­nat­ing the usual sus­pects: vac­uum leak, de­bris in tank, dri­v­e­line win­dow, power cou­pler, etc. The throt­tling back of rep­e­ti­tion rate from 120 to 60 Hz al­lowed con­tin­ued pro­duc­tion with a di­min­ished beam, one that re­duced neu­tron flux to three ex­per­i­men­tal areas. Dur­ing the an­nual shut­down in 2019, a more thor­ough in­ves­ti­ga­tion in­volv­ing the use of x-ray de­tec­tion, high-res­o­lu­tion cam­eras and IR de­tec­tion through site glass win­dows was per­formed. After a tena­cious search, a 30 cm long crack was dis­cov­ered in a weld at one of the ion pump port grates. In­ac­ces­si­bil­ity for weld­ing from the out­side and in a con­fined space, non-in­tru­sive re­pairs were tried first but were un­suc­cess­ful. Ul­ti­mately, an ex­pert welder en­tered the tank to weld the crack under un­fa­mil­iar weld­ing con­di­tions. This paper de­scribes the di­ag­noses, non-in­tru­sive so­lu­tions and ul­ti­mate re­pair of the crack in the ac­cel­er­at­ing struc­ture.
 
slides icon Slides MOYE4 [3.232 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOYE4  
About • Received ※ 23 July 2022 — Revised ※ 04 August 2022 — Accepted ※ 05 August 2022 — Issue date ※ 13 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPA13 Design of a Surrogate Model for MUED at BNL Using VSim, Elegant and HPC simulation, gun, electron, laser 72
 
  • S.I. Sosa Guitron, S. Biedron, T.B. Bolin
    UNM-ECE, Albuquerque, USA
  • S. Biedron
    Element Aero, Chicago, USA
  • S. Biedron
    UNM-ME, Albuquerque, New Mexico, USA
 
  Funding: U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Program of Electron and Scanning Probe Microscopes, award number DE-SC0021365.
The MeV Ul­tra­fast Elec­tron Dif­frac­tion (MUED) in­stru­ment at Brookhaven Na­tional Lab­o­ra­tory is a unique ca­pa­bil­ity for ma­te­r­ial sci­ence. As part of a plan to make MUED a high-through­put user fa­cil­ity, we are ex­plor­ing in­stru­men­ta­tion de­vel­op­ments based on Ma­chine Learn­ing (ML). We are de­vel­op­ing a sur­ro­gate model of MUED that can be used to sup­port con­trol tasks. The sur­ro­gate model will be based on beam sim­u­la­tions that are bench­marked to ex­per­i­men­tal ob­ser­va­tions. We use VSim to model the beam dy­nam­ics of the ra­dio-fre­quency gun and El­e­gant to trans­port the beam through the rest of the beam-line. We also use High Per­for­mance Com­put­ing re­sources from Ar­gonne Lead­er­ship Com­put­ing Fa­cil­ity to gen­er­ate the data for the sur­ro­gate model based on the orig­i­nal sim­u­la­tion as well as train­ing the ML model.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA13  
About • Received ※ 01 August 2022 — Revised ※ 09 August 2022 — Accepted ※ 11 August 2022 — Issue date ※ 21 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPA18 Residual Dose and Environmental Monitoring for the Fermilab Main Injector Tunnel Using the Data Acquisition Logging Engine (Dale) survey, radiation, proton, operation 87
 
  • N. Chelidze, R. Ainsworth, B.C. Brown, D. Capista, K.J. Hazelwood, D.K. Morris, M.J. Murphy
    Fermilab, Batavia, Illinois, USA
 
  Funding: Fermi National Accelerator Laboratory
The Re­cy­cler and the Main In­jec­tor are part of the Fer­mi­lab Ac­cel­er­a­tor com­plex used to de­liver pro­ton beam to the dif­fer­ent ex­per­i­ments. It is very im­por­tant to con­trol and min­i­mize losses in both ma­chines dur­ing op­er­a­tion, to re­duce per­son­nel dose from resid­ual ac­ti­va­tion and to pre­serve com­po­nent life­time. To min­i­mize losses, we need to iden­tify the loss points and ad­just the com­po­nents ac­cord­ingly. The Data Ac­qui­si­tion Loss En­gine (DALE) plat­form has been de­vel­oped within the Main In­jec­tor de­part­ment and up­graded through­out the years. DALE is used to sur­vey the en­tire en­clo­sure for resid­ual dose rates and en­vi­ron­men­tal read­ings when un­re­stricted ac­cess to the en­clo­sure is pos­si­ble. Cur­rently DALE has two ra­di­a­tion me­ters, which are aligned along each ma­chine, so loss points can be iden­ti­fied for both at the same time. DALE at­taches to the en­clo­sure carts and is con­tin­u­ously in mo­tion mon­i­tor­ing dose rates and other en­vi­ron­men­tal read­ings. In this paper we will de­scribe how DALE is used to pro­vide ra­di­a­tion maps of the resid­ual dose rates in the en­clo­sure. We will also com­pare the loss points with the Beam Loss mon­i­tor data.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA18  
About • Received ※ 02 August 2022 — Revised ※ 05 August 2022 — Accepted ※ 11 August 2022 — Issue date ※ 21 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPA43 Dee Voltage Regulator for the 88-Inch Cyclotron cyclotron, feedback, controls, power-supply 147
 
  • M. Kireeff, P. Bloemhard, T. Hassan, L. Phair
    LBNL, Berkeley, California, USA
 
  Funding: This work was supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under Contract No. DE-AC02-05CH11231
A new broad­band Dee volt­age reg­u­la­tor was de­signed and built for the 88-Inch Cy­clotron at Lawrence Berke­ley Na­tional Lab­o­ra­tory. The pre­vi­ous reg­u­la­tor was ob­so­lete, con­se­quently, it was dif­fi­cult to trou­bleshoot and re­pair. Ad­di­tion­ally, dur­ing op­er­a­tion, it dis­played prob­lems of dis­tor­tion and sta­bil­ity at cer­tain fre­quen­cies. The new reg­u­la­tor uses off-the-shelf com­po­nents that can de­tect and dis­able the RF dur­ing spark­ing events, pro­tect­ing the RF dri­ver sys­tem. Fur­ther­more, it im­proves the tun­ing of the cy­clotron and al­lows con­sis­tency in op­er­a­tion.
 
poster icon Poster MOPA43 [1.032 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA43  
About • Received ※ 02 August 2022 — Revised ※ 04 August 2022 — Accepted ※ 16 August 2022 — Issue date ※ 09 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPA80 Design Study for Non-Intercepting Gas-Sheet Profile Monitor at FRIB photon, heavy-ion, electron, simulation 229
 
  • A. Lokey, S.M. Lidia
    FRIB, East Lansing, Michigan, USA
 
  Funding: Work supported by the US Department of Energy, Office of Science, High Energy Physics under Cooperative Agreement award number DE-SC0018362 and Michigan State University.
Non-in­va­sive pro­file mon­i­tors offer a sig­nif­i­cant ad­van­tage for con­tin­u­ous, on­line mon­i­tor­ing of trans­verse beam pro­file and tun­ing of beam pa­ra­me­ters dur­ing op­er­a­tion. This is due to both the non-de­struc­tive na­ture of the mea­sure­ment and the unique fea­ture that some mon­i­tors have of being able to de­ter­mine both trans­verse pro­files in one mea­sure­ment [1]. One method of in­ter­est for mak­ing this mea­sure­ment is the use of a thin gas cur­tain, which in­ter­cepts the beam and gen­er­ates both ions and pho­tons, which can be col­lected at a de­tec­tor sit­u­ated per­pen­dic­u­lar to the gas sheet. This study will in­ves­ti­gate the re­quire­ments for de­vel­op­ing such a mea­sure­ment de­vice for use at the Fa­cil­ity for Rare Iso­tope Beams (FRIB), which pro­duces high-in­ten­sity, multi charge state, heavy ion beams. In­cluded will be an ini­tial de­sign spec­i­fi­ca­tions and an analy­sis of al­ter­na­tives be­tween ion­iza­tion and beam-in­duced flu­o­res­cence mea­sure­ment tech­niques for ac­quir­ing sig­nal from the gas sheet.
[1] I. Yamada, M. Wada, K. Moriya, et al, "High-intensity beam profile measurement using a gas sheet monitor by beam induced fluorescence detection," Phys. Rev. Accel. Beams 24, 042801, 2021.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA80  
About • Received ※ 03 August 2022 — Revised ※ 06 August 2022 — Accepted ※ 06 September 2022 — Issue date ※ 07 October 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPA22 Measurements of Bunch Length in the Advanced Photon Source Booster Synchrotron booster, synchrotron, background, photon 394
 
  • J.C. Dooling, W. Berg, J.R. Calvey, K.C. Harkay, K.P. Wootton
    ANL, Lemont, Illinois, USA
 
  Funding: Work supported by the U.S. D.O.E.,Office of Science, Office of Basic Energy Sciences, under contract number DE-AC02- 06CH11357.
A bunch du­ra­tion mon­i­tor (BDM) was in­stalled at the end of a syn­chro­tron light mon­i­tor (SLM) port in the Ad­vanced Pho­ton Source (APS) booster syn­chro­tron. The BDM is based on a fast Hama­matsu metal-semi­con­duc­tor-metal de­tec­tor with nom­i­nal rise and fall times of 30 ps. Bunch length data is es­pe­cially im­por­tant as the bunch charge will be raised from 3 nC, used in the ex­ist­ing ma­chine, to as much as 18 nC for APS-Up­grade op­er­a­tion. Dur­ing pre­lim­i­nary high-charge stud­ies, the SLM image is ob­served to move over a pe­riod of min­utes while the BDM sig­nal in­ten­sity varies; the mo­tion is likely due to ther­mal load­ing of the in-tun­nel syn­chro­tron light mir­ror. Work is un­der­way to sta­bi­lize the po­si­tion using a sim­ple feed­back sys­tem and mo­tor­ized mir­ror mount, as well as a new syn­chro­tron light mir­ror as­sem­bly with im­proved ther­mal load han­dling. The feed­back sys­tem will main­tain op­ti­cal align­ment on the BDM at an op­ti­mum po­si­tion based on the SLM cen­troid lo­ca­tion. The op­ti­cal lay­out and feed­back sys­tem will be pre­sented along with pre­lim­i­nary bunch length data.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-TUPA22  
About • Received ※ 04 August 2022 — Revised ※ 09 August 2022 — Accepted ※ 10 August 2022 — Issue date ※ 09 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPA28 Update on the Development of a Low-Cost Button BPM Signal Detector at AWA pick-up, simulation, electron, electronics 409
 
  • W. Liu, G. Chen, D.S. Doran, S.Y. Kim, X. Lu, P. Piot, J.G. Power, C. Whiteford, E.E. Wisniewski
    ANL, Lemont, Illinois, USA
  • E.E. Wisniewski
    IIT, Chicago, Illinois, USA
 
  Funding: Work supported by the US Department of Energy, Office of Science.
A sin­gle-pulse, high dy­namic range, cost-ef­fec­tive BPM sig­nal de­tec­tor has been on the most wanted list of the Ar­gonne Wake­field Ac­cel­er­a­tor (AWA) Test Fa­cil­ity for many years. The unique ca­pa­bil­i­ties of the AWA beam­line re­quire BPM in­stru­men­ta­tion with an un­prece­dented dy­namic range, thus a cost-ef­fec­tive so­lu­tion could be chal­leng­ing to de­sign and pro­to­type. With the help of a bet­ter cir­cuit model for a but­ton BPM sig­nal source, we are able to do the cir­cuit sim­u­la­tions with more re­al­is­tic input sig­nals and make pre­dic­tions much closer to re­al­i­ties. Our most re­cent de­sign and pro­to­type re­sults are shared in this paper.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-TUPA28  
About • Received ※ 01 August 2022 — Revised ※ 08 August 2022 — Accepted ※ 11 August 2022 — Issue date ※ 09 October 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPA37 A Distributed Beam Loss Monitor Based upon Activation of Oxygen in Deionised Cooling Water storage-ring, radiation, photon, experiment 433
 
  • K.P. Wootton
    ANL, Lemont, Illinois, USA
 
  Funding: This research used resources of the Advanced Photon Source, operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357.
We pro­pose a novel beam loss de­tec­tion scheme whereby ac­ti­va­tion of deionised cool­ing water is used to ob­serve el­e­vated ra­di­a­tion around the APS stor­age ring. This is based on ra­dioac­ti­va­tion of oxy­gen within deionised cool­ing water by gamma rays above 10 MeV and neu­trons above 15 MeV. Losses would be de­tected using a gamma ray de­tec­tor mon­i­tor­ing process water flow out of the ac­cel­er­a­tor en­clo­sure. We an­tic­i­pate that this could be used to pro­vide a seg­mented, dis­trib­uted loss mon­i­tor sys­tem cov­er­ing the ac­cel­er­a­tor com­po­nents clos­est to lo­ca­tions where ra­di­a­tion is gen­er­ated.
 
poster icon Poster TUPA37 [0.528 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-TUPA37  
About • Received ※ 02 August 2022 — Accepted ※ 09 August 2022 — Issue date ※ 26 September 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPA43 Novel RF Phase Detector for Accelerator Applications controls, LLRF, cavity, feedback 446
 
  • J.M. Potter
    JP Accelerator Works, Los Alamos, New Mexico, USA
 
  A novel phase de­tec­tor has been de­vel­oped that is suit­able for use in an rf phase locked loop for lock­ing an rf source to an rf ac­cel­er­a­tor struc­ture or phase lock­ing the ac­cel­er­a­tor struc­ture to a fixed or ad­justable fre­quency rf source. It is also use­ful for fast phase feed­back to con­trol the phase of an ac­cel­er­a­tor rf field. The prin­ci­ple is ap­plic­a­ble to a wide range of fre­quen­cies and am­pli­tudes. The phase is uniquely and un­am­bigu­ously de­ter­mined over 360°, elim­i­nat­ing the need for ex­ter­nal phase shifters or phase ref­er­ences. The op­er­a­tion of this phase de­tec­tor is de­scribed in de­tail. An ap­pli­ca­tion is de­scribed that uses a DDS-based LLRF source as the rf input to a high-power rf sys­tem.  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-TUPA43  
About • Received ※ 02 August 2022 — Revised ※ 04 August 2022 — Accepted ※ 05 August 2022 — Issue date ※ 06 October 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPA15 High-Field Design Concept for Second Interaction Region of the Electron-Ion Collider electron, collider, luminosity, proton 648
 
  • B.R. Gamage, R. Ent, R. Rajput-Ghoshal, T. Satogata, A. Seryi, W. Wittmer, Y. Zhang
    JLab, Newport News, Virginia, USA
  • D. Arbelaez, P. Ferracin, G.L. Sabbi
    LBNL, Berkeley, California, USA
  • E.C. Aschenauer, J.S. Berg, H. Witte
    BNL, Upton, New York, USA
  • V.S. Morozov
    ORNL RAD, Oak Ridge, Tennessee, USA
  • F. Savary
    CERN, Meyrin, Switzerland
  • P.N. Vedrine
    CEA-DRF-IRFU, France
  • A.V. Zlobin
    Fermilab, Batavia, Illinois, USA
 
  Funding: Contract No. DE-AC05-06OR23177, Contract No. DE-SC0012704 and Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy.
Ef­fi­cient re­al­iza­tion of the sci­en­tific po­ten­tial of the Elec­tron Ion Col­lider (EIC) calls for ad­di­tion of a fu­ture sec­ond In­ter­ac­tion Re­gion (2nd IR) and a de­tec­tor in the RHIC IR8 re­gion after the EIC pro­ject com­ple­tion. The sec­ond IR and de­tec­tor are needed to in­de­pen­dently cross-check the re­sults of the first de­tec­tor, and to pro­vide mea­sure­ments with com­ple­men­tary ac­cep­tance. The avail­able space in the ex­ist­ing RHIC IR8 and max­i­mum fields achiev­able with NbTi su­per­con­duct­ing mag­net tech­nol­ogy im­pose con­straints on the 2nd IR per­for­mance. Since com­mis­sion­ing of the 2nd IR is en­vi­sioned in a few years after the first IR, such a long time frame al­lows for more R&D on the Nb3Sn mag­net tech­nol­ogy. Thus, it could pro­vide a po­ten­tial al­ter­na­tive tech­nol­ogy choice for the 2nd IR mag­nets. Presently, we are ex­plor­ing its po­ten­tial ben­e­fits for the 2nd IR per­for­mance, such as im­prove­ment of the lu­mi­nos­ity and ac­cep­tance, and are also as­sess­ing the tech­ni­cal risks as­so­ci­ated with use of Nb3Sn mag­nets. In this paper, we pre­sent the cur­rent progress of this work.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-WEPA15  
About • Received ※ 04 August 2022 — Revised ※ 11 August 2022 — Accepted ※ 17 August 2022 — Issue date ※ 31 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPA25 Field Emission Mitigation in CEBAF SRF Cavities Using Deep Learning cavity, radiation, neutron, linac 676
 
  • K. Ahammed, J. Li
    ODU, Norfolk, Virginia, USA
  • A. Carpenter, R. Suleiman, C. Tennant, L.S. Vidyaratne
    JLab, Newport News, Virginia, USA
 
  Funding: This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under contract DE-AC05-06OR23177.
The Con­tin­u­ous Elec­tron Beam Ac­cel­er­a­tor Fa­cil­ity (CEBAF) op­er­ates hun­dreds of su­per­con­duct­ing radio fre­quency (SRF) cav­i­ties in its two main lin­ear ac­cel­er­a­tors. Field emis­sion can occur when the cav­i­ties are set to high op­er­at­ing RF gra­di­ents and is an on­go­ing op­er­a­tional chal­lenge. This is es­pe­cially true in newer, higher gra­di­ent SRF cav­i­ties. Field emis­sion re­sults in dam­age to ac­cel­er­a­tor hard­ware, gen­er­ates high lev­els of neu­tron and gamma ra­di­a­tion, and has dele­te­ri­ous ef­fects on CEBAF op­er­a­tions. So, field emis­sion re­duc­tion is im­per­a­tive for the re­li­able, high gra­di­ent op­er­a­tion of CEBAF that is re­quired by ex­per­i­menters. Here we ex­plore the use of deep learn­ing ar­chi­tec­tures via mul­ti­layer per­cep­tron to si­mul­ta­ne­ously model ra­di­a­tion mea­sure­ments at mul­ti­ple de­tec­tors in re­sponse to ar­bi­trary gra­di­ent dis­tri­b­u­tions. These mod­els are trained on col­lected data and could be used to min­i­mize the ra­di­a­tion pro­duc­tion through gra­di­ent re­dis­tri­b­u­tion. This work builds on pre­vi­ous ef­forts in de­vel­op­ing ma­chine learn­ing (ML) mod­els, and is able to pro­duce sim­i­lar model per­for­mance as our pre­vi­ous ML model with­out re­quir­ing knowl­edge of the field emis­sion onset for each cav­ity.
 
poster icon Poster WEPA25 [1.586 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-WEPA25  
About • Received ※ 01 August 2022 — Revised ※ 03 August 2022 — Accepted ※ 05 August 2022 — Issue date ※ 20 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPA42 A Modular X-Ray Detector for Beamline Diagnostics at LANL DTL, diagnostics, shielding, electron 725
 
  • P.M. Freeman, B. Odegard, R. Schmitz, D. Stuart, J. Yang
    UCSB, Santa Barbara, California, USA
  • J. Bohon, M.S. Gulley, E.-C. Huang, J. Smedley
    LANL, Los Alamos, New Mexico, USA
  • L. Malavasi
    WPI, Worcester, MA, USA
 
  An X-ray de­tec­tor is being de­vel­oped for di­ag­nos­tic mea­sure­ment and mon­i­tor­ing of the Drift Tube LINAC (DTL) at the Los Alamos Neu­tron Sci­ence Cen­ter (LAN­SCE) at Los Alamos Na­tional Lab. The de­tec­tor will con­sist of a row of x-ray spec­trom­e­ters ad­ja­cent to the DTL that will mea­sure the spec­trum of X-rays re­sult­ing from bremsstrahlung of elec­trons cre­ated in vac­uum by the RF. Each spec­trom­e­ter will mon­i­tor a spe­cific gap be­tween drift tubes, and will con­sist of an array of scin­til­lat­ing crys­tals cou­pled to SiPMs read out with cus­tom-built elec­tron­ics. The spec­trom­e­ter is de­signed with one LYSO and three NaI crys­tals. The LYSO pro­vides a tagged gamma source with three peaks that are used for cal­i­bra­tion of the NaI. A pro­to­type of the spec­trom­e­ter was tested at the LAN­SCE DTL to val­i­date the fea­si­bil­ity of mea­sur­ing gamma spec­tra and per­form­ing self-cal­i­bra­tion in situ. A sum­mary of test re­sults with the LAN­SCE pro­to­type will be pre­sented, along with a de­tec­tor sys­tem de­sign that aims to be mod­u­lar and in­ex­pen­sive across all mod­ules in the DTL. Plans for fu­ture de­vel­op­ment will be pre­sented as well.  
poster icon Poster WEPA42 [1.308 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-WEPA42  
About • Received ※ 04 August 2022 — Revised ※ 06 August 2022 — Accepted ※ 09 August 2022 — Issue date ※ 11 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPA64 Design and Commissioning of the ASU CXLS Machine Protection System controls, GUI, klystron, machine-protect 770
 
  • S.P. Jachim, B.J. Cook, J.R.S. Falconer, A.J. Gardeck, W.S. Graves, M.R. Holl, R.S. Rednour, D.M. Smith, J.V. Vela
    Arizona State University, Tempe, USA
 
  Funding: This work was supported in part by NSF award #1935994.
To pro­tect against fault con­di­tions in the high-power RF trans­port and ac­cel­er­at­ing struc­tures of the Ari­zona State Uni­ver­sity (ASU) Com­pact X-Ray Light Source (CXLS), the Ma­chine Pro­tec­tion Sys­tem (MPS) ex­tin­guishes the 6.5-MW RF en­ergy sources within ap­prox­i­mately 50 ns of the fault event. In ad­di­tion, each fault is lo­cal­ized and re­ported re­motely via USB for op­er­a­tional and main­te­nance pur­poses. This paper out­lines the re­quire­ments, de­sign, and per­for­mance of the MPS ap­plied on the CXLS.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-WEPA64  
About • Received ※ 13 July 2022 — Revised ※ 28 July 2022 — Accepted ※ 08 August 2022 — Issue date ※ 12 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THZE3 An Electrodeless Diamond Beam Monitor electron, experiment, controls, vacuum 904
 
  • S.V. Kuzikov, P.V. Avrakhov, C.-J. Jing, E.W. Knight
    Euclid TechLabs, Solon, Ohio, USA
  • D.S. Doran, C.-J. Jing, J.G. Power, E.E. Wisniewski
    ANL, Lemont, Illinois, USA
  • C.-J. Jing
    Euclid Beamlabs, Bolingbrook, USA
 
  Funding: The work was supported by DoE SBIR grant #DE-SC0019642.
Being a wide-band semi­con­duc­tor, di­a­mond can be used to mea­sure the flux of pass­ing par­ti­cles based on a par­ti­cle-in­duced con­duc­tiv­ity ef­fect. We re­cently demon­strated a di­a­mond elec­trode­less elec­tron beam halo mon­i­tor. That mon­i­tor was based on a thin piece of di­a­mond (blade) placed in an open high-qual­ity mi­crowave res­onator. The blade par­tially in­ter­cepted the beam. By mea­sur­ing the change in RF prop­er­ties of the res­onator, one could infer the beam pa­ra­me­ters. At Ar­gonne Wake­field Ac­cel­er­a­tor we have tested 1D and 2D mon­i­tors. To en­hance the sen­si­tiv­ity of our di­a­mond sen­sor, we pro­posed ap­ply­ing a bias volt­age to the di­a­mond which can sus­tain the avalanche of free car­ri­ers. In ex­per­i­ment car­ried out with 120 kV, ~1 µA beam we showed that the re­sponse sig­nal for the avalanche mon­i­tor bi­ased with up to 5 kV volt­age can be up to 100 times larger in com­par­i­son with the sig­nal of the same non-bi­ased de­vice.
 
slides icon Slides THZE3 [4.257 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-THZE3  
About • Received ※ 20 July 2022 — Revised ※ 28 July 2022 — Accepted ※ 06 August 2022 — Issue date ※ 08 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)