Paper | Title | Other Keywords | Page |
---|---|---|---|
MOYD4 | Model Parameters Determination in EIC Strong-Strong Simulation | simulation, electron, collider, emittance | 9 |
|
|||
The ion beam is sensitive to numerical noise in the strong-strong simulation of the Electron-Ion Collider (EIC). This paper discusses the impact of model parameters — macro particles, transverse grids and longitudinal slices — on beam size evolution in PIC based strong-strong simulation. It will help us to understand the emittance growth in strong-strong simulation. | |||
![]() |
Slides MOYD4 [0.849 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOYD4 | ||
About • | Received ※ 02 August 2022 — Revised ※ 03 August 2022 — Accepted ※ 10 August 2022 — Issue date ※ 11 August 2022 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOYD5 | Tolerances of Crab Dispersion at the Interaction Point in the Hadron Storage Ring of the Electron-Ion Collider | simulation, electron, dynamic-aperture, cavity | 12 |
|
|||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy. The Electron Ion Collider (EIC) presently under construction at Brookhaven National Laboratory will collide polarized high energy electron beams with hadron beams with luminosity up to 1034 cm-2 s-1 in the center mass energy range of 20 to 140 GeV. Due to the detector solenoid in the interaction region, the design horizontal crabbing angle will be coupled to the vertical plane if uncompensated. In this article, we estimate the tolerance of crab dispersion at the interaction point in the EIC Hadron Storage Ring (HSR). Both strong-strong and weak-strong simulations are used. We found that there is a tight tolerance of vertical crabbing angle at the interaction point in the HSR. |
|||
![]() |
Slides MOYD5 [1.183 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOYD5 | ||
About • | Received ※ 01 August 2022 — Accepted ※ 04 August 2022 — Issue date ※ 15 August 2022 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPA01 | Realistic CAD-Based Geometries for Arbitrary Magnets with Beam Delivery Simulation (BDSIM) | vacuum, extraction, simulation, synchrotron | 55 |
|
|||
Monte Carlo simulations are required to evaluate beam losses and secondary radiation accurately in particle accelerators and beamlines. Detailed CAD geometries are critical to account for a realistic distribution of material masses but increase the model complexity and often lead to code duplication. Beam Delivery Simulation (BDSIM) and the Python package pyg4ometry enable handling such accelerator models within a single, simplified workflow to run complete simulations of primary and secondary particle tracking and interactions with matter using Geant4 routines. Additional capabilities have been developed to model arbitrary bent magnets by associating externally modeled geometries to the magnet poles, yoke, and beampipe. Individual field descriptions can be associated with the yoke and vacuum pipe separately to provide fine-grained control of the magnet model. The implementation of these new features is described in detail and applied to the modeling of the CERN Proton Synchrotron (PS) combined function magnets. | |||
![]() |
Poster MOPA01 [0.781 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA01 | ||
About • | Received ※ 02 August 2022 — Revised ※ 07 August 2022 — Accepted ※ 09 August 2022 — Issue date ※ 16 September 2022 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPA02 | Activation of the IBA Proteus One Proton Therapy Beamline Using BDSIM and FISPACT-II | neutron, shielding, radiation, simulation | 59 |
|
|||
Cyclotron-based proton therapy systems generate large fluxes of secondary particles due to the beam interactions with the beamline elements, with the energy degrader being the dominant source. Compact systems exacerbate these challenges for concrete shielding and beamline element activation. Our implementation of the Rigorous Two-Step method uses Beam Delivery Simulation (BDSIM), a Geant4-based particle tracking code, for primary and secondary particles transport and fluence scoring, and FISPACT-II for time-dependent nuclear inventory and solving the rate equations. This approach is applied to the Ion Beam Applications (IBA) Proteus®ONE (P1) system, for which a complete model has been built, validated, and used for shielding activation simulations. We detail the first simulations of the activation on quadrupole magnets in high-fluence locations downstream of the degrader. Results show the evolution of the long-lived nuclide concentrations for short and long timescales throughout the facility lifetime for a typical operation scenario. | |||
![]() |
Poster MOPA02 [0.553 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA02 | ||
About • | Received ※ 02 August 2022 — Revised ※ 09 August 2022 — Accepted ※ 19 August 2022 — Issue date ※ 21 September 2022 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPA14 | A Wide Dynamic-Range Halo Monitor for 8 GeV Proton Beams at FNAL | target, beam-transport, operation, photon | 75 |
|
|||
Funding: Foundation: U.S.-Japan Science and Technology Cooperation Program in High Energy Physics. Eliminating harmful beam halos is the most important technique for high-intensity proton accelerators. Therefore, beam halo diagnosis is indispensable and becomes more and more important. At J-PARC, a wide dynamic range monitor was installed in the beam transport line in 2012. The device is a two-dimensional beam profile monitor [*, **], and it has a dynamic range of approximately six digits of magnitude by using Optical Transition Radiation and fluorescence screens. The FNAL accelerator complex has been upgrading through increased beam intensity and beam quality. A new beam halo diagnostic device is required in the beam transport line between the booster and recycler. It will be manufactured in a collaboration between J-PARC and FNAL as a part of the U.S.-Japan Science and Technology Cooperation Program in High Energy Physics. We are redesigning the monitor to satisfy FNAL specifications for beam energy, intensity, and size. The equipment will be manufactured at J-PARC and then shipped to FNAL in 2024. In this report, the design of the device will be described. * https://accelconf.web.cern.ch/IBIC2013/papers/tucl2.pdf ** http://accelconf.web.cern.ch/HB2014/papers/tuo2ab04.pdf |
|||
DOI • | reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA14 | ||
About • | Received ※ 03 August 2022 — Revised ※ 07 August 2022 — Accepted ※ 11 August 2022 — Issue date ※ 09 September 2022 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPA18 | Residual Dose and Environmental Monitoring for the Fermilab Main Injector Tunnel Using the Data Acquisition Logging Engine (Dale) | survey, detector, radiation, operation | 87 |
|
|||
Funding: Fermi National Accelerator Laboratory The Recycler and the Main Injector are part of the Fermilab Accelerator complex used to deliver proton beam to the different experiments. It is very important to control and minimize losses in both machines during operation, to reduce personnel dose from residual activation and to preserve component lifetime. To minimize losses, we need to identify the loss points and adjust the components accordingly. The Data Acquisition Loss Engine (DALE) platform has been developed within the Main Injector department and upgraded throughout the years. DALE is used to survey the entire enclosure for residual dose rates and environmental readings when unrestricted access to the enclosure is possible. Currently DALE has two radiation meters, which are aligned along each machine, so loss points can be identified for both at the same time. DALE attaches to the enclosure carts and is continuously in motion monitoring dose rates and other environmental readings. In this paper we will describe how DALE is used to provide radiation maps of the residual dose rates in the enclosure. We will also compare the loss points with the Beam Loss monitor data. |
|||
DOI • | reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA18 | ||
About • | Received ※ 02 August 2022 — Revised ※ 05 August 2022 — Accepted ※ 11 August 2022 — Issue date ※ 21 September 2022 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPA27 | Validation of the 650 MHz SRF Tuner on the Low and High Beta Cavities for PIP-II at 2 K | cavity, SRF, linac, operation | 109 |
|
|||
The PIP-II linac will include thirty-six BG=0.61 and twenty-four BG=0.92 650 MHz 5 cell elliptical SRF cavities. Each cavity will be equipped with a tuning system consisting of a double lever slow tuner for coarse frequency tuning and a piezoelectric actuator for fine frequency tuning. The same tuner will be used for both the BG=0.61 and BG=0.92 cavities. Results of testing the cavity-tuner system for the BG=0.61 will be presented for the first time. | |||
![]() |
Poster MOPA27 [0.782 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA27 | ||
About • | Received ※ 03 August 2022 — Revised ※ 10 August 2022 — Accepted ※ 11 August 2022 — Issue date ※ 04 October 2022 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPA28 | Semantic Regression for Disentangling Beam Losses in the Fermilab Main Injector and Recycler | operation, real-time, distributed, beam-losses | 112 |
|
|||
Funding: Operated by Fermi Research Alliance, LLC under Contract No.De-AC02-07CH11359 with the United States Department of Energy. Additional funding provided by Grant Award No. LAB 20-2261, Batavia, IL USA Fermilab’s Main Injector enclosure houses two accelerators: the Main Injector (MI) and the Recycler (RR). In periods of joint operation, when both machines contain high intensity beam, radiative beam losses from MI and RR overlap on the enclosure’s beam loss monitoring (BLM) system, making it difficult to attribute those losses to a single machine. Incorrect diagnoses result in unnecessary downtime that incurs both financial and experimental cost. In this work, we introduce a novel neural approach for automatically disentangling each machine’s contributions to those measured losses. Using a continuous adaptation of the popular UNet architecture in conjunction with a novel data augmentation scheme, our model accurately infers the machine of origin on a per-BLM basis in periods of joint and independent operation. Crucially, by extracting beam loss information at varying receptive fields, the method is capable of learning both local and global machine signatures and producing high quality inferences using only raw BLM loss measurements. |
|||
DOI • | reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA28 | ||
About • | Received ※ 02 August 2022 — Revised ※ 05 August 2022 — Accepted ※ 06 August 2022 — Issue date ※ 03 September 2022 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPA63 | Multiphysics Simulation of the Thermal Response of a Nanofibrous Target in a High-Intensity Beam | target, simulation, experiment, radiation | 185 |
|
|||
Nanofibrous structures are of high interest to the fields of engineering and materials science, and investigation of their properties as well as discovery of novel applications for them both constitute lively areas of research. A very promising application of nanofiber mats lies in the field of accelerator technology: beam targets made from nanofiber mats offer a solution to the problem of advancing the "intensity frontier"–-the limit on the beam intensities that can be realized in fixed target experiments and neutrino production facilities. However, testing has shown that the survivability of these nanofiber targets depends strongly on their manufacturing parameters, such as the packing density of fibers. In this work, we will use multiphysics simulations to perform a thermal study on how nanofiber targets react to high intensity beams, so that the dependency of the targets’ lifetime on their construction parameters can be better understood. | |||
![]() |
Poster MOPA63 [3.656 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA63 | ||
About • | Received ※ 14 July 2022 — Revised ※ 02 August 2022 — Accepted ※ 04 August 2022 — Issue date ※ 25 August 2022 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPA66 | Hadron Monitor Calibration System for NuMI | hadron, controls, software, target | 193 |
|
|||
Funding: CAST Fellowship NuMI (Neutrinos at Main Injector) beamline at Fermi National Accelerator Laboratory provides neutrinos to various neutrino experiments. The hadron monitor consisting of a 5 by 5 array of ionization chambers is part of the diagnostics for the beamline. In order to calibrate the hadron monitor, a gamma source is needed. We present the status and progress of the development of the calibration system for the hadron monitor. The system based on Raspberry Pi controlled CNC system, motors, and position sensors would allow us to place the gamma source precisely to calibrate the signal gain of individual pixels. The ultimate outcome of the study is a prototype of the calibration system. |
|||
![]() |
Poster MOPA66 [2.300 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA66 | ||
About • | Received ※ 18 July 2022 — Accepted ※ 12 August 2022 — Issue date ※ 05 September 2022 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUXD3 | Production Pathways for Medically Interesting Isotopes | target, radiation, neutron, isotope-production | 271 |
|
|||
Funding: LR was supported by the U.S. NSF REU at Old Dominion University Grant No. 1950141. AH was supported by the U.S. DOE, Office of Science, Office of Nuclear Physics under Contract No. DE-AC05-06OR23177 Radioisotopes are commonly used in nuclear medicine for treating cancer and new, more effective treatment options are always desired. As a result, there is a national need for new radioisotopes and ways to produce them. A computer program was created that evaluates the daughters for all known reactions of projectiles (gamma rays, protons or neutrons) with every stable target isotope by comparing the cross-sections for each reaction at a desired energy, and outputs a list of the potential daughter isotopes that are most likely to be generated. The program then evaluates the decay chains of these daughters to provide a list of the possible decay chains that contain the radioisotope of interest. By knowing the daughter production and decay chain for each isotope, it is possible to go from the desired radioisotope to the stable isotope that can be used as a target for its production. This project would facilitate the search for new pathways to creating useful theranostic isotopes. |
|||
![]() |
Slides TUXD3 [0.591 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-TUXD3 | ||
About • | Received ※ 17 July 2022 — Revised ※ 01 August 2022 — Accepted ※ 12 August 2022 — Issue date ※ 25 August 2022 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPA04 | Sheet Electron Probe for Beam Tomography | electron, diagnostics, cathode, simulation | 354 |
|
|||
Funding: Supported by DOE SBIR grant # DE-SC0021581. We propose a new approach to electron beam tomography: we will generate a pulsed sheet of electrons. As the ion beam bunches pass through the sheet, they cause distortions in the distribution of sheet electrons arriving at a luminescent screen with a CCD device on the other side of the beam; these sheet electrons are interpreted to give a continuous measurement of the beam profile. The apparatus to generate the sheet beam is a strip cathode, which, compared to the scanning electron beam probe, is smaller, has simpler design and less expensive manufacturing, has better magnetic shielding, has higher sensitivity and higher resolution, has better accuracy of measurement, and has better time resolution. |
|||
DOI • | reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-TUPA04 | ||
About • | Received ※ 22 July 2022 — Revised ※ 02 August 2022 — Accepted ※ 08 August 2022 — Issue date ※ 10 August 2022 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPA30 | Development of a Compact 2D Carbon Beam Scanner for Cancer Therapy | power-supply, simulation, magnet-design, radiation | 417 |
|
|||
Funding: This work was supported by the U.S. Department of Energy, under Contract No. DE-AC02-06CH11357. This research was support through the DOE’s Accelerator Stewardship program. A novel trapezoidal coil 2D carbon beam scanner has been designed, and a prototype has been successfully developed and tested. The field performance of the magnet has been characterized and it is in excellent agreement with the simulations. A better than 1% field uniformity in both planes has been achieved within the useful aperture of the magnet. This represents a significant improvement over the prior art of the elephant-ear scanner design. A comparison of the two designs and the results from the new trapezoidal-coil design will be presented and discussed. Higher power and online beam testing are planned in the near future. |
|||
DOI • | reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-TUPA30 | ||
About • | Received ※ 25 July 2022 — Revised ※ 14 August 2022 — Accepted ※ 15 August 2022 — Issue date ※ 25 August 2022 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPA42 | LANSCE Modernization Project at LANL | rfq, simulation, experiment, LEBT | 443 |
|
|||
In the framework of LANSCE Accelerator Modernization Project preliminary research, during evaluation of critical technology elements it was found that the proposed RFQ design had not yet been demonstrated experimentally worldwide. Such an RFQ should combine the ability of traditional light ion RFQs (i.e., [1]) and the flexibility of acceleration of pre-bunched beams, like RFQs for heavy ions [2]. The proposed RFQ should be able to accelerate H+ and H− beams with 35-mA beam current from 100 keV to 3 MeV and at the same time preserve the prescribed macro-bunch beam time structure required by experiments. New algorithms for RFQ geometry generation have been proposed, and optimization algorithms are being developed at LANL. LAMP demonstration plans also include development of a new set of electrodes for the existing RFQ at our Test Stand that will allow us to demonstrate the critical technology ahead of time in a laboratory experimental setup with low duty factor and low energy.
[1] S. Henderson et al., Nucl. Instrum. Methods Phys. Res., Sect. A, v. 763, pp. 610-673 (2014). [2] H. Ren et al., J. Phys. Conf. Ser., v. 1067, 052010 (2018). |
|||
![]() |
Poster TUPA42 [0.635 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-TUPA42 | ||
About • | Received ※ 04 August 2022 — Revised ※ 05 August 2022 — Accepted ※ 09 August 2022 — Issue date ※ 18 August 2022 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEXD6 | Electron Cloud Measurements in Fermilab Booster | electron, booster, simulation, laser | 556 |
|
|||
Fermilab Booster synchrotron requires an intensity upgrade from 4.5×1012 to 6.5×1012 protons per pulse as a part of Fermilab’s Proton Improvement Plan-II (PIP-II). One of the factors which may limit the high-intensity performance is the fast transverse instabilities caused by electron cloud effects. According to the experience in the Recycler, the electron cloud gradually builds up over multiple turns in the combined function magnets and can reach final intensities orders of magnitude greater than in a pure dipole. Since the Booster synchrotron also incorporates combined function magnets, it is important to discover any existence of an electron cloud. And if it does, its effects on the PIP-II era Booster and whether mitigating techniques are required. As the first step, the presence or absence of the electron cloud was investigated using a gap technique. This paper presents experimental details and observations of the bunch-by-bunch tune shifts of beams with various bunch train structures at low and high intensities and simulation results conducted using PyECLOUD software. | |||
![]() |
Slides WEXD6 [4.483 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-WEXD6 | ||
About • | Received ※ 02 August 2022 — Revised ※ 11 August 2022 — Accepted ※ 21 August 2022 — Issue date ※ 09 September 2022 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEYD6 | Design of a PIP-II Era Mu2e Experiment | target, solenoid, experiment, collider | 568 |
|
|||
We propose a design of an upgraded Mu2e experiment for the future Fermilab PIP-II era based on the muon collider front end. The consensus is that such an upgrade should provide a factor of 10 increase in the rate of stopping muons in the experimental target. The current Mu2e design is optimized for 8 kW of protons at 8 GeV. The PIP-II upgrade project is a 250-meter-long CW linac capable of accelerating a 2-mA proton beam to a kinetic energy of 800 MeV (total power 1.6 MW). This would significantly improve the Fermilab proton source to enable next-generation intensity frontier experiments. But using this 800 MeV beam poses challenges to the Mu2E experiment. Bright muon beams generated from sources designed for muon collider and neutrino factory facilities have been shown to generate two orders of magnitude more muons per proton than the current Mu2e production target and solenoid. In contrast to the current Mu2e, the muon collider design has forward-production of muons from the target. | |||
![]() |
Slides WEYD6 [1.937 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-WEYD6 | ||
About • | Received ※ 06 August 2022 — Revised ※ 11 August 2022 — Accepted ※ 12 August 2022 — Issue date ※ 09 October 2022 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEYE3 | Improvements to the Recycler/Main Injector to Deliver 850 kW+ | resonance, booster, operation, experiment | 578 |
|
|||
The Main Injector is used to deliver a 120 GeV high power proton beam for Neutrino experiments. The design power of 700 kW was reached in early 2017 but further improvements have seen a new sustained peak power of 893 kW. Two of the main improvements include the shortening of the Main Injector ramp length as well optimizing the slip-stacking procedure performed in the Recycler to reduce the amount of uncaptured beam making its way into the Main Injector. These improvements will be discussed in this paper as well future upgrades to reach higher beam powers. | |||
![]() |
Slides WEYE3 [24.715 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-WEYE3 | ||
About • | Received ※ 02 August 2022 — Revised ※ 08 August 2022 — Accepted ※ 10 August 2022 — Issue date ※ 18 August 2022 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEYE4 | Electron Cloud Simulations in the Fermilab Recycler | electron, simulation, software, optics | 581 |
|
|||
We present a simulation study to characterize the stability region of the Fermilab Recycler Ring in the context of secondary emission yield (SEY). Interactions between electrons and beam pipe material can produce electron clouds that jeopardize beam stability in certain focusing configurations. Such an instability was documented in the Recycler, and the work presented here reflects improvements to better understand that finding. We incorporated the Furman-Pivi Model into a PyECLOUD analysis, and we determined the instability threshold given various bunch lengths, beam intensities, SEY magnitudes, and model parameters. | |||
![]() |
Slides WEYE4 [2.096 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-WEYE4 | ||
About • | Received ※ 01 August 2022 — Revised ※ 06 August 2022 — Accepted ※ 08 August 2022 — Issue date ※ 30 September 2022 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEYE6 | Thermionic Sources for Electron Cooling at IOTA | electron, vacuum, cathode, space-charge | 588 |
|
|||
We are planning a new electron cooling experiment at the Integrable Optics Test Accelerator (IOTA) at Fermilab for cooling ~2.5 MeV protons in the presence of intense space-charge. Here we present the simulations and design of a thermionic electron source for cooling at IOTA. We particularly discuss parameters of the thermionic source electrodes, as well as the simulation results. We also present a new electron source test-stand at the University of Chicago, which will be used to test the new thermionic electron source, as well as other electron sources. In addition, we discuss results from analyzing the test stand operations with a currently existing electron source. Furthermore, we present future steps for the test stand as well as production and commissioning of the thermionic source at IOTA. | |||
![]() |
Slides WEYE6 [3.182 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-WEYE6 | ||
About • | Received ※ 02 August 2022 — Revised ※ 07 August 2022 — Accepted ※ 08 August 2022 — Issue date ※ 28 August 2022 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPA15 | High-Field Design Concept for Second Interaction Region of the Electron-Ion Collider | electron, collider, luminosity, detector | 648 |
|
|||
Funding: Contract No. DE-AC05-06OR23177, Contract No. DE-SC0012704 and Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. Efficient realization of the scientific potential of the Electron Ion Collider (EIC) calls for addition of a future second Interaction Region (2nd IR) and a detector in the RHIC IR8 region after the EIC project completion. The second IR and detector are needed to independently cross-check the results of the first detector, and to provide measurements with complementary acceptance. The available space in the existing RHIC IR8 and maximum fields achievable with NbTi superconducting magnet technology impose constraints on the 2nd IR performance. Since commissioning of the 2nd IR is envisioned in a few years after the first IR, such a long time frame allows for more R&D on the Nb3Sn magnet technology. Thus, it could provide a potential alternative technology choice for the 2nd IR magnets. Presently, we are exploring its potential benefits for the 2nd IR performance, such as improvement of the luminosity and acceptance, and are also assessing the technical risks associated with use of Nb3Sn magnets. In this paper, we present the current progress of this work. |
|||
DOI • | reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-WEPA15 | ||
About • | Received ※ 04 August 2022 — Revised ※ 11 August 2022 — Accepted ※ 17 August 2022 — Issue date ※ 31 August 2022 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPA67 | Effects of Transverse Dependence of Kicks in Simulations of Microbunched Electron Cooling | hadron, electron, kicker, simulation | 780 |
|
|||
Funding: This work was supported by Brookhaven Science Associates, LLC under contract No. DE-SC0012704 with the U.S. Department of Energy, and by the Department of Energy, contract DE-AC03-76SF00515. Microbunched electron cooling (MBEC) is a cooling scheme in which a beam of hadrons to be cooled induces energy perturbations in a beam of electrons. These electron energy perturbations are amplified and turned into density modulations, which in turn provide energy kicks to the hadrons, tending to cool them. For simplification, previous work has modelled the electron-hadron interactions using a disc-disc model, assuming that the inter-particle kicks depend only on the longitudinal distances between individual hadrons and electrons. In reality, these kicks will also have a transverse dependence, which will impact the cooling process. We incorporate this transverse kick dependence into our simulations of the cooling process, allowing us to better understand the physics and provide improved design goals for the MBEC cooler for the Electron-Ion Collider. |
|||
DOI • | reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-WEPA67 | ||
About • | Received ※ 19 July 2022 — Revised ※ 08 August 2022 — Accepted ※ 10 August 2022 — Issue date ※ 26 August 2022 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPA75 | {6-D} Element-by-Element Particle Tracking with Crab Cavity Phase Noise and Weak-Strong Beam-Beam Interaction for the Hadron Storage Ring of the Electron-Ion Collider | emittance, cavity, simulation, electron | 809 |
|
|||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy. The Electron Ion Collider (EIC) presently under construction at Brookhaven National Laboratory will collide polarized high energy electron beams with hadron beams with luminosity up to 1034 cm-2 s-1 in the center mass energy range of 20 to 140 GeV. Crab cavities are used to compensate the geometric luminosity due to a large crossing angle in the EIC. However, it was found that the phase noise in crab cavities will generate a significant emittance growth for hadron beams and its tolerance from analytical calculation is very small for the Hadron Storage Ring (HSR) of the EIC. In this paper, we report on 6-D symplectic particle tracking to estimate the proton emittance growth rate, especially in the vertical plane, for the HSR with weak-strong beam-beam and other machine or lattice errors. |
|||
DOI • | reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-WEPA75 | ||
About • | Received ※ 01 August 2022 — Revised ※ 06 August 2022 — Accepted ※ 09 August 2022 — Issue date ※ 19 August 2022 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPA78 | Proton-Electron Focusing in EIC Ring Electron Cooler | electron, focusing, emittance, hadron | 820 |
|
|||
The Electron Ion Collider (EIC) requires a cooling of protons at the top energy. The Ring Electron Cooler (REC) is a suitable option for such a cooling. In this paper we consider an effect of a proton-electron space charge (SC) focusing on the quality of the electron beam in the REC. We show that, with properly adjusted parameters of the Ring Electron Cooler, the SC focusing in the REC cooling section does not significantly affect the cooler performance. | |||
DOI • | reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-WEPA78 | ||
About • | Received ※ 02 August 2022 — Revised ※ 03 August 2022 — Accepted ※ 09 August 2022 — Issue date ※ 20 August 2022 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPA83 | Extended Soft-Gaussian Code for Beam-Beam Simulations | simulation, electron, collider, electromagnetic-fields | 830 |
|
|||
Large ion beam emittance growth is observed in strong-strong beam-beam simulations for the Electron-Ion Collider (EIC). As we know, the Particle-In-Cell (PIC) solver is subject to numerical noises. As an alternative approach, an extended soft-Gaussian code is developed with help of Hermite polynomials in this paper. The correlation between the horizontal and the vertical coordinates of macro-particles is considered. The 3rd order center moments are also included in the beam-beam force. This code could be used as a cross check tool of PIC based strong-strong simulation. | |||
![]() |
Poster WEPA83 [0.440 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-WEPA83 | ||
About • | Received ※ 02 August 2022 — Revised ※ 05 August 2022 — Accepted ※ 08 August 2022 — Issue date ※ 24 August 2022 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THZD3 | Design of 3-GeV High-Gradient Booster for Upgraded Proton Radiography at LANSCE | booster, focusing, linac, quadrupole | 891 |
|
|||
Funding: Work supported by US DOE under contract 89233218CNA000001 Increasing the proton beam energy from the present 800 MeV to 3 GeV will improve the resolution of the Proton Radiography Facility at the Los Alamos Neutron Science Center (LANSCE) by a factor of 10. It will bridge the gap between the existing facilities, which covers large length scales for thick objects, and future high-brightness light sources, which can provide the finest resolution. Proton radiography requires a sequence of short beam pulses (~20 x 80 ns) separated by intervals of variable duration, from about 300 ns to 1 to 2 μs. To achieve the required parameters, the high gradient 3-GeV booster is proposed. The booster consists of 1.4 GHz buncher, two accelerators based on 2.8 GHz and 5.6 GHz high-gradient accelerating structures and 1.4 GHz debuncher. Utilization of buncher-accelerator-debuncher scheme allows us to combine high-gradient acceleration with significant reduction of beam momentum spread. Paper discusses details of linac design and expected beam parameters. |
|||
![]() |
Slides THZD3 [2.348 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-THZD3 | ||
About • | Received ※ 28 July 2022 — Revised ※ 06 August 2022 — Accepted ※ 08 August 2022 — Issue date ※ 04 October 2022 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THZD4 | Accelerating Structures for High-Gradient Proton Radiography Booster at LANSCE | cavity, booster, linac, distributed | 894 |
|
|||
Increasing energy of proton beam at LANSCE from 800 MeV to 3 GeV improves radiography resolution ~10 times. We proposed accomplishing such an energy boost with a compact cost-effective linac based on normal conducting high-gradient (HG) RF accelerating structures. Such an unusual proton linac is feasible for proton radiography (pRad), which operates with short RF pulses. For a compact pRad booster at LANSCE, we have developed a multi-stage design: a short L-band section to capture and compress the 800-MeV proton beam followed by the main HG linac based on S- and C-band cavities, and finally, by an L-band de-buncher [1]. Here we present details of development, including EM and thermal-stress analysis, of proton HG structures with distributed RF coupling for the pRad booster. A simple two-cell structure with distributed coupling is being fabricated and will be tested at the LANL C-band RF Test Stand.
[1] S.S. Kurennoy, Y.K. Batygin. IPAC21, MOPAB210. |
|||
![]() |
Slides THZD4 [1.591 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-THZD4 | ||
About • | Received ※ 01 August 2022 — Revised ※ 10 August 2022 — Accepted ※ 11 August 2022 — Issue date ※ 26 September 2022 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||