Keyword: LEBT
Paper Title Other Keywords Page
MOPA90 Relating Initial Distribution to Beam Loss on the Front End of a Heavy-Ion Linac Using Machine Learning network, simulation, emittance, controls 263
 
  • A.D. Tran, Y. Hao
    FRIB, East Lansing, Michigan, USA
  • J.L. Martinez Marin, B. Mustapha
    ANL, Lemont, Illinois, USA
 
  Funding: This work was supported by a sub-reward from Argonne National Laboratory and supported by the U.S. Department of Energy, under Contract No. DE-AC02-06CH11357.
This work demonstrates using a Neural Network and a Gaussian Process to model the ATLAS front-end. Various neural network architectures were created and trained on the machine settings and outputs to model the phase space projections. The model was then trained on a dataset, with non-linear distortion, to gauge the transferability of the model from simulation to machine.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA90  
About • Received ※ 02 August 2022 — Revised ※ 05 August 2022 — Accepted ※ 06 August 2022 — Issue date ※ 11 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPA42 LANSCE Modernization Project at LANL rfq, simulation, experiment, proton 443
 
  • D.V. Gorelov, J. Barraza, D.A.D. Dimitrov, I. Draganić, E. Henestroza, S.S. Kurennoy
    LANL, Los Alamos, New Mexico, USA
 
  In the framework of LANSCE Accelerator Modernization Project preliminary research, during evaluation of critical technology elements it was found that the proposed RFQ design had not yet been demonstrated experimentally worldwide. Such an RFQ should combine the ability of traditional light ion RFQs (i.e., [1]) and the flexibility of acceleration of pre-bunched beams, like RFQs for heavy ions [2]. The proposed RFQ should be able to accelerate H+ and H beams with 35-mA beam current from 100 keV to 3 MeV and at the same time preserve the prescribed macro-bunch beam time structure required by experiments. New algorithms for RFQ geometry generation have been proposed, and optimization algorithms are being developed at LANL. LAMP demonstration plans also include development of a new set of electrodes for the existing RFQ at our Test Stand that will allow us to demonstrate the critical technology ahead of time in a laboratory experimental setup with low duty factor and low energy.
[1] S. Henderson et al., Nucl. Instrum. Methods Phys. Res., Sect. A, v. 763, pp. 610-673 (2014).
[2] H. Ren et al., J. Phys. Conf. Ser., v. 1067, 052010 (2018).
 
poster icon Poster TUPA42 [0.635 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-TUPA42  
About • Received ※ 04 August 2022 — Revised ※ 05 August 2022 — Accepted ※ 09 August 2022 — Issue date ※ 18 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)