Keyword: storage-ring
Paper Title Other Keywords Page
TUYE1 Coulomb Crystals in Storage Rings for Quantum Information Science laser, controls, rfq, operation 296
 
  • K.A. Brown
    BNL, Upton, New York, USA
  • A. Aslam, S. Biedron, T.B. Bolin, C. Gonzalez-Zacarias, S.I. Sosa Guitron
    UNM-ECE, Albuquerque, USA
  • B. Huang
    SBU, Stony Brook, USA
  • T.G. Robertazzi
    Stony Brook University, Stony Brook, New York, USA
 
  Quantum information science is a growing field that promises to take computing into a new age of higher performance and larger scale computing as well as being capable of solving problems classical computers are incapable of solving. The outstanding issue in practical quantum computing today is scaling up the system while maintaining interconnectivity of the qubits and low error rates in qubit operations to be able to implement error correction and fault-tolerant operations. Trapped ion qubits offer long coherence times that allow error correction. However, error correction algorithms require large numbers of qubits to work properly. We can potentially create many thousands (or more) of qubits with long coherence states in a storage ring. For example, a circular radio-frequency quadrupole, which acts as a large circular ion trap and could enable larger scale quantum computing. Such a Storage Ring Quantum Computer (SRQC) would be a scalable and fault tolerant quantum information system, composed of qubits with very long coherence lifetimes.  
slides icon Slides TUYE1 [8.834 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-TUYE1  
About • Received ※ 17 July 2022 — Revised ※ 02 August 2022 — Accepted ※ 08 August 2022 — Issue date ※ 11 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPA19 Avoiding Combinatorial Explosion in Simulation of Multiple Magnet Errors in Swap-Out Safety Tracking for the Advanced Photon Source Upgrade photon, simulation, lattice, injection 386
 
  • M. Borland, R. Soliday
    ANL, Lemont, Illinois, USA
 
  Funding: Work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.
The Advanced Photon Source (APS) is upgrading the storage ring to a hybrid seven-bend-achromat design with reverse bends, providing a natural emittance of 41 pm at 6 GeV. The small dynamic acceptance entails operation in on-axis swap-out mode. Careful consideration is required of the safety implications of injection with shutters open. Tracking studies require simulation of multiple simultaneous magnet errors, some combinations of which may introduce potentially dangerous conditions. A naive grid scan of possible errors, while potentially very complete, would be prohibitively time-consuming. We describe a different approach using biased sampling of particle distributions from successive scans. We also describe other aspects of the simulations, such as use of 3D field maps and a highly detailed aperture model.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-TUPA19  
About • Received ※ 01 August 2022 — Revised ※ 07 August 2022 — Accepted ※ 09 August 2022 — Issue date ※ 10 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPA21 Hydrodynamic and Beam Dynamic Simulations of Ultra-Low Emittance Whole Beam Dumps in the Advanced Photon Source Storage Ring electron, simulation, experiment, photon 390
 
  • J.C. Dooling, M. Borland, A.M. Grannan, C.J. Graziani, Y. Lee, R.R. Lindberg, G. Navrotski
    ANL, Lemont, Illinois, USA
  • N.M. Cook
    RadiaSoft LLC, Boulder, Colorado, USA
  • D.W. Lee
    UCSC, Santa Cruz, California, USA
 
  Funding: Work supported by Accelerator Science and Technology LDRD Project 2021-0119 and the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.
The Advanced Photon Source Upgrade will use a multi-bend achromatic lattice to reduce vertical and horizontal beam emittances by one- and two-orders of magnitude respectively; in addition operating current will double. The resulting electron beam will be capable of depositing more than 150 MGy on machine protection collimators creating high-energy-density conditions. Work is underway to couple the beam dynamics code Elegant with the particle-matter interaction program MARS and the magnetohydrodynamics code FLASH to model the effects of whole beam dumps on the collimators. Loss distributions from Elegant are input to MARS which provide dose maps to FLASH. We also examine the propagation of downstream shower components after the beam interacts with the collimator. Electrons and positrons are tracked to determine locations of beam loss. Beam dump experiments conducted in the APS storage-ring, generated dose levels as high as 30 MGy resulting in severe damage to the collimator surfaces with melting in the bulk. The deformed collimator surface may lead to beam deposition in unexpected locations. A fan-out kicker is planned to mitigate the effects of whole beam dumps on the collimators.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-TUPA21  
About • Received ※ 02 August 2022 — Revised ※ 10 August 2022 — Accepted ※ 11 August 2022 — Issue date ※ 10 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPA29 Machine Learning for Predicting Power Supply Trips in Storage Rings power-supply, network, quadrupole, sextupole 413
 
  • I. Lobach, M. Borland, G.I. Fystro, A. Sannibale, Y. Sun
    ANL, Lemont, Illinois, USA
  • A. Diaw, J.P. Edelen
    RadiaSoft LLC, Boulder, Colorado, USA
 
  Funding: The work is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.
In the Advanced Photon Source (APS) storage ring at Argonne National Lab, trips in the magnet power supplies (PSs) lead to a complete electron beam loss a few times a year. This results in unexpected interruptions of the users’ experiments. In this contribution, we investigate the historical data for the last two decades to find precursors for the PS trips that could provide an advance notice for future trips and allow some preventive action by the ring operator or by the PS maintenance team. Various unsupervised anomaly detection models can be trained on the vast amounts of available reference data from the beamtime periods that ended with an intentional beam dump. We find that such models can sometimes detect trip precursors in PS currents, voltages, and in the temperatures of magnets, capacitors and transistors (components of PSs).
 
poster icon Poster TUPA29 [2.116 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-TUPA29  
About • Received ※ 03 August 2022 — Revised ※ 07 August 2022 — Accepted ※ 10 August 2022 — Issue date ※ 18 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPA37 A Distributed Beam Loss Monitor Based upon Activation of Oxygen in Deionised Cooling Water radiation, detector, photon, experiment 433
 
  • K.P. Wootton
    ANL, Lemont, Illinois, USA
 
  Funding: This research used resources of the Advanced Photon Source, operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357.
We propose a novel beam loss detection scheme whereby activation of deionised cooling water is used to observe elevated radiation around the APS storage ring. This is based on radioactivation of oxygen within deionised cooling water by gamma rays above 10 MeV and neutrons above 15 MeV. Losses would be detected using a gamma ray detector monitoring process water flow out of the accelerator enclosure. We anticipate that this could be used to provide a segmented, distributed loss monitor system covering the accelerator components closest to locations where radiation is generated.
 
poster icon Poster TUPA37 [0.528 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-TUPA37  
About • Received ※ 02 August 2022 — Accepted ※ 09 August 2022 — Issue date ※ 26 September 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPA38 Sublinear Intensity Response of Cerium-Doped Yttrium Aluminium Garnet Screen with Charge electron, booster, FEL, linac 437
 
  • K.P. Wootton, A.H. Lumpkin
    ANL, Lemont, Illinois, USA
 
  Funding: This research used resources of the Advanced Photon Source, operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357.
Swap-out injection to the Advanced Photon Source Upgrade storage ring necessitates the injection of ~17 nC electron bunches at 6 GeV. To aid with machine tune-up and to measure the beam size, diagnostic imaging screens are envisaged at several locations in the beam transport line from the booster synchrotron to the storage ring. As such, it is important to determine whether the response of these screens to charge is linear. In the present work, we examine the effect of sublinear intensity quenching of a Cerium-doped Yttrium-Aluminium-Garnet scintillator screen. A 1.3 megapixel FLIR BlackFly monochrome digital camera was used to image the beam at the scintillator. At 7 GeV beam energy, over the charge densities investigated (<10 fC um-2), an approximately 10 % reduction of the imaging intensity due to quenching of the scintillator was observed.
 
poster icon Poster TUPA38 [0.557 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-TUPA38  
About • Received ※ 02 August 2022 — Accepted ※ 03 August 2022 — Issue date ※ 09 August 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPA22 Measuring the Electric Dipole Moment of the Electron in a Two-Energy Spin-Transparent Storage Ring electron, dipole, polarization, experiment 665
 
  • R. Suleiman, Y.S. Derbenev
    JLab, Newport News, Virginia, USA
  • V.S. Morozov
    ORNL RAD, Oak Ridge, Tennessee, USA
 
  Funding: This work is supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under contract DE-AC05-06OR23177 and by UT-Battelle, LLC, under contract DE-AC05-00OR22725.
We will present a new design of a two-energy storage ring for low energy (0.2 to 2 MeV) polarized electron bunches [1]. The new design is based on the transparent spin methodology that cancels the spin precession due to the magnetic dipole moment at any energy while allowing for spin precession induced by the fundamental physics of interest to accumulate. The buildup of the vertical component of beam polarization can be measured using standard Mott polarimetry that is optimal at low electron energy. These rings can be used to measure the permanent electric dipole moment of the electron, relevant to CP violation and matter-antimatter asymmetry in the universe, and to search for dark energy and ultra-light dark matter.
[1] R. Suleiman, V.S. Morozov, and Y.S. Derbenev, On possibilities of high precision experiments in fundamental physics in storage rings of low energy polarized electron beams, arXiv:2105.11575 (2021)
 
poster icon Poster WEPA22 [0.781 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-WEPA22  
About • Received ※ 04 August 2022 — Revised ※ 05 August 2022 — Accepted ※ 06 August 2022 — Issue date ※ 07 October 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPA70 Tensor Decomposition for the Compression and Analysis of 10 kHz BPM Data factory, status, monitoring, real-time 792
 
  • J. Choi, Y. Hidaka, Y. Hu, G.M. Wang
    BNL, Upton, New York, USA
 
  Funding: This work is supported in part by the U.S. Department of Energy (DOE) under contract No. DE-SC0012704.
In the NSLS-II storage ring during user operation, fast-acquisition (FA) 10-kHz BPM data are collected, and their spectral properties are analyzed. Various periodograms and spectral peaks are being provided every minute, and they are very useful in identifying any changes in the orbit. Unfortunately, because of the large amount of data, only several numbers are being continually archived for later study, and the full raw data are saved only by hand when needed. We are developing methods utilizing tensor decomposition techniques to save and analyze the FA data; this paper reports the current status of this project.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-WEPA70  
About • Received ※ 02 August 2022 — Revised ※ 08 August 2022 — Accepted ※ 10 August 2022 — Issue date ※ 28 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPA80 Progress on Convergence Map Based on Square Matrix for Nonlinear Lattice Optimization lattice, dynamic-aperture, resonance, linear-dynamics 823
 
  • L.H. Yu, Y. Hao, Y. Hidaka, F. Plassard, V.V. Smaluk
    BNL, Upton, New York, USA
  • Y. Hao
    FRIB, East Lansing, Michigan, USA
 
  Funding: DOE.
We report progress on applying the square matrix method to obtain in high speed a "convergence map", which is similar but different from a frequency map. We give an example of applying the method to optimize a nonlinear lattice for the NSLS-II upgrade. The convergence map is obtained by solving the nonlinear dynamical equation by iteration of the perturbation method and studying the convergence. The map provides information about the stability border of the dynamical aperture. We compare the map with the frequency map from tracking. The result in our example of nonlinear optimization of the NSLS-II lattice shows the new method may be applied in nonlinear lattice optimization, taking advantage of the high speed (about 30~300 times faster) to explore x, y, and the off-momentum phase space.
 
poster icon Poster WEPA80 [5.392 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-WEPA80  
About • Received ※ 19 July 2022 — Revised ※ 26 July 2022 — Accepted ※ 08 August 2022 — Issue date ※ 10 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPA81 Time-Resolved Experiments at NSLS II: Motivation and Machine Capabilities operation, timing, experiment, electron 826
 
  • G.M. Wang, B. Bacha, G. Bassi, G.L. Carr, Y. Hidaka, Y. Hu, Y. Li, C. Mazzoli, D. Padrazo Jr, R.S. Rainer, J. Rose, J.T. Sadowski, V.V. Smaluk, Y. Tian, L. Wiegart, G. Williams, X. Yang
    BNL, Upton, New York, USA
 
  NSLS-II is a 3-GeV third-generation synchrotron light source at Brookhaven National Lab. The storage ring has been in routine operations for over six years and hosts 28 operating beamlines. The storage ring performance has continuously improved, including 500-mA with limited insertion devices closed, and routine 400-mA top off operation with 90% uniform filling pattern. Recently, we are exploring different operation modes, uniform multi single-bunch mode, and camshaft mode with a high single-bunch charge, to support timing-resolved user experiments. In this paper, we explore the potential for scientific experiments using the pulsed nature of the NSLS, summarize the user requirements on the beam parameters and the progress of accelerator studies.  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-WEPA81  
About • Received ※ 04 August 2022 — Revised ※ 12 August 2022 — Accepted ※ 13 August 2022 — Issue date ※ 22 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THYD1 XFEL as a Low-Emittance Injector for a 4th-Generation Synchrotron Radiation Source electron, injection, emittance, synchrotron 850
 
  • T. Hara
    RIKEN SPring-8 Center, Hyogo, Japan
 
  Low-emittance beam injection is required for the future SPring-8-II due to its small injection beam aperture. To meet this requirement, the SACLA linac has been used as a low-emittance injector since 2020 [1]. In order to perform the beam injection in parallel with XFEL operation, three accelerators are virtually constructed in a control system for the two XFEL beamlines and the beam injection, and thus the accelerator parameters can be independently tuned. Since the reference clock frequencies of the two accelerators are not related by an integer multiple, a new timing system was developed that achieves 3.8 ps (rms) synchronization. To maintain bunch purity better than 1e-8, which is routinely requested at SPring-8, an electron sweeper and an RF knock-out system are introduced for the SACLA injector and the SPring-8 storage ring. Although 0.1 nm-rad emittance of SACLA is increased by an order of magnitude at a transport line mainly due to quantum excitation of synchrotron radiation, it is still small enough for SPring-8-II. By shutting down an old dedicated injector complex, energy consumption has been significantly reduced, and it contributes to create a low-carbon society.
The speaker present this work on behalf of RIKEN-JASRI project team.
[1] Toru Hara et al., Phys. Rev. Accel. Beams 24, 110702 (2021).
 
slides icon Slides THYD1 [10.103 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-THYD1  
About • Received ※ 29 July 2022 — Revised ※ 05 August 2022 — Accepted ※ 07 August 2022 — Issue date ※ 23 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THYD4 Progress on the APS-U Injector Upgrade booster, injection, simulation, target 859
 
  • J.R. Calvey, T. Fors, K.C. Harkay, U. Wienands
    ANL, Lemont, Illinois, USA
 
  Funding: Work supported by U. S. Department of Energy, Office of Science, under Contract No. DE-AC02-06CH11357.
For the APS-Upgrade, it was decided to leave the present APS injector chain in place and make individual improvements where needed. The main challenges faced by the injectors are delivering a high charge bunch (up to 16 nC in a single shot) to the storage ring, operating the booster synchrotron and storage ring at different rf frequencies, and maintaining good charge stability during APS-U operations. This paper will summarize recent progress on the injector upgrade. Topics include bucket targeting with the new injection/extraction timing system (IETS), modeling of high charge longitudinal instability in the PAR, and measurements of charge stability for different modes of operation.
 
slides icon Slides THYD4 [2.015 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-THYD4  
About • Received ※ 19 July 2022 — Accepted ※ 11 August 2022 — Issue date ※ 22 August 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)