Keyword: GUI
Paper Title Other Keywords Page
MOZD2 Preliminary Study of a High Gain THz FEL in a Recirculating Cavity electron, radiation, undulator, FEL 30
 
  • A.C. Fisher, P. Musumeci
    UCLA, Los Angeles, California, USA
 
  The THz gap is a re­gion of the elec­tro­mag­netic spec­trum where high av­er­age and peak power ra­di­a­tion sources are scarce while at the same time sci­en­tific and in­dus­trial ap­pli­ca­tions are grow­ing in de­mand. Free-elec­tron laser cou­pling in a mag­netic un­du­la­tor is one of the best op­tions for ra­di­a­tion gen­er­a­tion in this fre­quency range, but slip­page ef­fects re­quire the use of rel­a­tively long and low cur­rent elec­tron bunches to drive the THz FEL, lim­it­ing am­pli­fi­ca­tion gain and out­put peak power. Here we use a cir­cu­lar wave­guide in a 0.96 m strongly ta­pered he­li­cal un­du­la­tor to match the ra­di­a­tion and e-beam ve­loc­i­ties, al­low­ing res­o­nant en­ergy ex­trac­tion from an ul­tra­short 200 pC 5.5 MeV elec­tron beam over an ex­tended dis­tance. E-beam en­ergy mea­sure­ments, sup­ported by en­ergy and spec­tral mea­sure­ment of the THz FEL ra­di­a­tion, in­di­cate an av­er­age en­ergy ef­fi­ciency of ~ 10%, with some par­ti­cles los­ing > 20% of their ini­tial ki­netic en­ergy.  
slides icon Slides MOZD2 [7.005 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOZD2  
About • Received ※ 04 August 2022 — Revised ※ 04 August 2022 — Accepted ※ 06 August 2022 — Issue date ※ 13 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPA62 High Quality Conformal Coatings on Accelerator Components via Novel Radial Magnetron with High-Power Impulse Magnetron Sputtering niobium, target, plasma, SRF 182
 
  • W.M. Huber, I. Haehnlein, T.J. Houlahan, B.E. Jurczyk, A.S. Morrice, R.A. Stubbers
    Starfire Industries LLC, Champaign, USA
 
  Funding: This material is based upon work supported by the U.S. Department of Energy under Award Numbers DE-SC0019784 and DE-SC0020481.
In this work, we pre­sent two con­fig­u­ra­tions of a novel ra­dial mag­netron de­sign that are suit­able for coat­ing the com­plex inner sur­faces of a va­ri­ety of mod­ern par­ti­cle ac­cel­er­a­tor com­po­nents. These de­vices have been used in con­junc­tion with high-power im­pulse mag­netron sput­ter­ing (HiP­IMS) to de­posit cop­per and nio­bium films onto the inner sur­faces of bel­lows as­sem­blies, wave­guides, and SRF cav­i­ties. These films, with thick­nesses of up to 3 µm and 40 µm for nio­bium and cop­per, re­spec­tively, have been shown to be con­for­mal, ad­her­ent, and con­duc­tive. In the case of cop­per, the post-bake RRR val­ues of the re­sult­ing films are well within the range spec­i­fied for elec­tro­plat­ing of the LCLS-II bel­lows and CEBAF wave­guide as­sem­blies. In ad­di­tion to re­quir­ing no chem­i­cal pro­cess­ing be­yond a de­ter­gent rinse and sol­vent de­grease, this mag­netron de­sign ex­hibits over 80% tar­get ma­te­r­ial uti­liza­tion. Fur­ther, in the case of nio­bium, an en­hance­ment in RRR over that of the bulk (tar­get) ma­te­r­ial has been ob­served.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA62  
About • Received ※ 02 August 2022 — Revised ※ 05 August 2022 — Accepted ※ 09 August 2022 — Issue date ※ 21 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPA74 Design of a W-Band Corrugated Waveguide for Structure Wakefield Acceleration wakefield, electron, acceleration, accelerating-gradient 210
 
  • B. Leung, X. Lu, C.L. Phillips, P. Piot
    Northern Illinois University, DeKalb, Illinois, USA
  • D.S. Doran, X. Lu, P. Piot, J.G. Power
    ANL, Lemont, Illinois, USA
 
  Cur­rent re­search on struc­ture wake­field ac­cel­er­a­tion aims to de­velop ra­dio-fre­quency struc­tures that can pro­duce high gra­di­ents, with work in the sub-ter­a­hertz regime being par­tic­u­larly in­ter­est­ing be­cause of the po­ten­tial to cre­ate more com­pact and eco­nom­i­cal ac­cel­er­a­tors. Metal­lic cor­ru­gated wave­guides at sub-ter­a­hertz fre­quen­cies are one such struc­ture. We have de­signed a W-band cor­ru­gated wave­guide for a collinear wake­field ac­cel­er­a­tion ex­per­i­ment at the Ar­gonne Wake­field Ac­cel­er­a­tor (AWA). Using the CST Stu­dio Suite, we have op­ti­mized the struc­ture for the max­i­mum achiev­able gra­di­ent in the wake­field from a nom­i­nal AWA elec­tron bunch at 65 MeV. Sim­u­la­tion re­sults from dif­fer­ent solvers of CST were bench­marked with each other, with an­a­lyt­i­cal mod­els, and with an­other sim­u­la­tion code, ECHO. We are in­ves­ti­gat­ing the me­chan­i­cal de­sign, suit­able fab­ri­ca­tion tech­nolo­gies, and the pos­si­bil­ity to apply ad­vanced bunch shap­ing tech­niques to im­prove the struc­ture per­for­mance.  
poster icon Poster MOPA74 [1.518 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA74  
About • Received ※ 30 July 2022 — Revised ※ 03 August 2022 — Accepted ※ 07 August 2022 — Issue date ※ 26 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPA76 Wakefield Modeling in Sub-THz Dielectric-Lined Waveguides wakefield, simulation, electron, experiment 218
 
  • C.L. Phillips, B. Leung, X. Lu, P. Piot
    Northern Illinois University, DeKalb, Illinois, USA
 
  Di­elec­tric-lined wave­guides have been ex­ten­sively stud­ied to po­ten­tially sup­port high-gra­di­ent ac­cel­er­a­tion in beam-dri­ven di­elec­tric wake­field ac­cel­er­a­tion (DWFA) and for beam ma­nip­u­la­tions. In this paper, we in­ves­ti­gate the wake­field gen­er­ated by a rel­a­tivis­tic bunch pass­ing through a di­elec­tric wave­guide with dif­fer­ent trans­verse sec­tions. We specif­i­cally con­sider the case of a struc­ture con­sist­ing of two di­elec­tric slabs, along with rec­tan­gu­lar and square struc­tures. Nu­mer­i­cal sim­u­la­tions per­formed with the fine-dif­fer­ence time-do­main of the WarpX pro­gram re­veal some in­ter­est­ing fea­tures of the trans­verse wake and a pos­si­ble ex­per­i­ment at the Ar­gonne Wake­field Ac­cel­er­a­tor (AWA) is pro­posed.  
poster icon Poster MOPA76 [1.294 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA76  
About • Received ※ 12 August 2022 — Accepted ※ 13 August 2022 — Issue date ※ 12 September 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPA13 Affordable, Efficient Injection-Locked Magnetrons for Superconducting Cavities cavity, injection, electron, controls 366
 
  • M. Popovic, M.A. Cummings, R.P. Johnson, S.A. Kahn, R.R. Lentz, M.L. Neubauer, T. Wynn
    Muons, Inc, Illinois, USA
  • T. Blassick, J.K. Wessel
    Richardson Electronics Ltd, Lafox, Illinois, USA
 
  Funding: DE-SC0022586.
Ex­ist­ing mag­netrons that are typ­i­cally used to study meth­ods of con­trol or life­time im­prove­ments for SRF ac­cel­er­a­tors are built for much dif­fer­ent ap­pli­ca­tions such kitchen mi­crowave ovens (1kW, 2.45 GHz) or in­dus­trial heat­ing (100 kW, 915 MHz). In this pro­ject, Muons, Inc. will work with an in­dus­trial part­ner to de­velop fast and flex­i­ble man­u­fac­tur­ing tech­niques to allow many ideas to be tested for con­struc­tion vari­a­tions that en­able new phase and am­pli­tude in­jec­tion lock­ing con­trol meth­ods, longer life­time, and in­ex­pen­sive re­fur­bish­ing re­sult­ing in the low­est pos­si­ble life-cy­cle costs. In Phase II mag­netron sources will be tested on SRF cav­i­ties to ac­cel­er­ate an elec­tron beam at JLab. A mag­netron op­er­at­ing at 650 MHz will be con­structed and tested with our novel patented sub­crit­i­cal volt­age op­er­a­tion meth­ods to drive an SRF cav­ity. The choice of 650 MHz is an op­ti­mal fre­quency for mag­netron ef­fi­ciency. The crit­i­cal areas of mag­netron man­u­fac­tur­ing and de­sign af­fect­ing life-cy­cle costs that will be mod­eled for im­prove­ment in­clude: Qext, fil­a­ments, mag­netic field, vane de­sign, and novel con­trol of out­gassing.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-TUPA13  
About • Received ※ 05 August 2022 — Revised ※ 11 August 2022 — Accepted ※ 12 August 2022 — Issue date ※ 23 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPA15 Development of a CVD System for Next-Generation SRF Cavities cavity, controls, SRF, vacuum 372
 
  • G. Gaitan, P. Bishop, A.T. Holic, G. Kulina, J. Sears, Z. Sun
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • M. Liepe
    Cornell University, Ithaca, New York, USA
  • B.W. Wendland
    University of Minnesota, Minnesota, USA
 
  Funding: This research is funded by the National Science Foundation under Grant No. PHY-1549132, the Center for Bright Beams.
Next-gen­er­a­tion, thin-film sur­faces em­ploy­ing Nb3Sn, NbN, NbTiN, and other com­pound su­per­con­duc­tors are des­tined to allow reach­ing su­pe­rior RF per­for­mance lev­els in SRF cav­i­ties. Op­ti­mized, ad­vanced de­po­si­tion processes are re­quired to en­able high-qual­ity films of such ma­te­ri­als on large and com­plex-shaped cav­i­ties. For this pur­pose, Cor­nell Uni­ver­sity is de­vel­op­ing a re­mote plasma-en­hanced chem­i­cal vapor de­po­si­tion (CVD) sys­tem that fa­cil­i­tates coat­ing on com­pli­cated geome­tries with a high de­po­si­tion rate. This sys­tem is based on a high-tem­per­a­ture tube fur­nace with a clean vac­uum and fur­nace load­ing sys­tem. The use of plasma along­side re­act­ing pre­cur­sors will sig­nif­i­cantly re­duce the re­quired pro­cess­ing tem­per­a­ture and pro­mote pre­cur­sor de­com­po­si­tion. The sys­tem can also be used for an­neal­ing cav­i­ties after the CVD process to im­prove the sur­face layer. The chlo­rine pre­cur­sors have the po­ten­tial to be cor­ro­sive to the equip­ment and pose spe­cific safety con­cerns. A MAT­LAB GUI has been de­vel­oped to con­trol and mon­i­tor the CVD sys­tem at Cor­nell.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-TUPA15  
About • Received ※ 14 July 2022 — Revised ※ 08 August 2022 — Accepted ※ 09 August 2022 — Issue date ※ 22 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPA16 Singularity-Free Exact Dipole Bend Transport Equations dipole, simulation, lattice, framework 375
 
  • D. Sagan
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Funding: Department of Energy
Exact trans­port equa­tions for a pure di­pole bend (a bend with a di­pole field and noth­ing else) have been de­rived and for­mu­lated to avoid sin­gu­lar­i­ties when eval­u­ated. The trans­port equa­tions in­clude fi­nite edge an­gles and no as­sump­tion is made in terms of the bend­ing field being matched to the cur­va­ture of the co­or­di­nate sys­tem.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-TUPA16  
About • Received ※ 05 August 2022 — Revised ※ 09 August 2022 — Accepted ※ 10 August 2022 — Issue date ※ 16 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPA69 Improving Cavity Phase Measurements at Los Alamos Neutron Science Center cavity, LLRF, controls, neutron 493
 
  • P. Van Rooy, A.T. Archuleta, L.J. Castellano, S. Kwon, M.S. Prokop, P.A. Torrez
    LANL, Los Alamos, New Mexico, USA
 
  Con­trol sta­bil­ity of the phase and am­pli­tude in the cav­ity is a sig­nif­i­cant con­trib­u­tor to beam per­for­mance. The abil­ity to mea­sure phase and am­pli­tude of pulsed RF sys­tems at ac­cu­ra­cies of ± 0.1 de­grees and ± 0.1 per­cent re­quired for our sys­tems is dif­fi­cult, and cus­tom-de­signed cir­cuitry is re­quired. The dig­i­tal low-level RF up­grade at the Los Alamos Neu­tron Sci­ence Cen­ter is con­tin­u­ing to progress with im­proved cav­ity phase mea­sure­ments. The pre­vi­ous gen­er­a­tion of the cav­ity phase and am­pli­tude mea­sure­ment sys­tem has a phase am­bi­gu­ity, which re­quires re­peated cal­i­bra­tions to as­cer­tain the cor­rect phase di­rec­tion. The new phase mea­sure­ment sys­tem re­moves the am­bi­gu­ity and the need for field cal­i­bra­tion while im­prov­ing the range and pre­ci­sion of the cav­ity phase mea­sure­ments. In ad­di­tion, the new dig­i­tal low-level RF sys­tems is de­signed to up­grade the legacy sys­tem with­out sig­nif­i­cant me­chan­i­cal, elec­tri­cal, or ca­bling changes. Per­for­mance data for the new phase mea­sure­ment sys­tem is pre­sented.  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-TUPA69  
About • Received ※ 02 August 2022 — Revised ※ 11 August 2022 — Accepted ※ 21 August 2022 — Issue date ※ 08 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPA75 High Gradient Testing Results of the Benchmark a/λ=0.105 Cavity at CERF-NM cavity, klystron, coupling, MMI 505
 
  • M.R.A. Zuboraj, D.V. Gorelov, T.W. Hall, M.E. Middendorf, D. Rai, E.I. Simakov, T. Tajima
    LANL, Los Alamos, New Mexico, USA
 
  Funding: This work was supported by Los Alamos National Laboratory’s Laboratory Directed Research and Development (LDRD) Program.
This pre­sen­ta­tion will re­port ini­tial re­sults of high gra­di­ent test­ing of two C-band ac­cel­er­at­ing cav­i­ties fab­ri­cated at Los Alamos Na­tional Lab­o­ra­tory (LANL). At LANL, we com­mis­sioned a C-band En­gi­neer­ing Re­search Fa­cil­ity of New Mex­ico (CERF-NM) which has unique ca­pa­bil­ity of con­di­tion­ing and test­ing ac­cel­er­at­ing cav­i­ties for op­er­a­tion at sur­face elec­tric fields at the ex­cess of 300 MV/m, pow­ered by a 50 MW, 5.712 GHz Canon kly­stron. Re­cently, we fab­ri­cated and tested two bench­mark cop­per cav­i­ties at CERF-NM. These cav­i­ties es­tab­lish a bench­mark for high gra­di­ent per­for­mance at C-band and the same geom­e­try will be used to pro­vide di­rect com­par­i­son be­tween high gra­di­ent per­for­mance of cav­i­ties fab­ri­cated of dif­fer­ent al­loys and by dif­fer­ent fab­ri­ca­tion meth­ods. The cav­i­ties con­sist of three cells with one high gra­di­ent cen­tral cell and two cou­pling cells on the sides. The ratio of the ra­dius of the cou­pling iris to the wave­length is a/λ=0.105. This poster will re­port high gra­di­ent test re­sults such as break­down rates as func­tion of peak sur­face elec­tric and mag­netic fields and pulse heat­ing.
 
poster icon Poster TUPA75 [0.890 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-TUPA75  
About • Received ※ 05 August 2022 — Revised ※ 11 August 2022 — Accepted ※ 12 August 2022 — Issue date ※ 01 October 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPA81 Design of a High-Power RF Breakdown Test for a Cryocooled C-Band Copper Structure cavity, cryogenics, distributed, electron 516
 
  • G.E. Lawler, A. Fukasawa, J.R. Parsons, J.B. Rosenzweig
    UCLA, Los Angeles, California, USA
  • Z. Li, S.G. Tantawi
    SLAC, Menlo Park, California, USA
  • A. Mostacci
    Sapienza University of Rome, Rome, Italy
  • E.I. Simakov, T. Tajima
    LANL, Los Alamos, New Mexico, USA
  • B. Spataro
    LNF-INFN, Frascati, Italy
 
  Funding: This work was supported by the DOE Contract DE-SC0020409.
High-gra­di­ent RF struc­tures ca­pa­ble of main­tain­ing gra­di­ents in ex­cess of 250 MV/m are crit­i­cal in sev­eral con­cepts for fu­ture elec­tron ac­cel­er­a­tors. Con­cepts such as the ul­tra-com­pact free elec­tron laser (UC-XFEL) and the Cool Cop­per Col­lider (C3) plan to ob­tain these gra­di­ents through the cryo­genic op­er­a­tion (<77K) of nor­mal con­duct­ing cop­per cav­i­ties. Break­down rates, the most sig­nif­i­cant gra­di­ent lim­i­ta­tion, are sig­nif­i­cantly re­duced at these low tem­per­a­tures, but the pre­cise physics is com­plex and in­volves many in­ter­act­ing ef­fects. High-power RF break­down mea­sure­ments at cryo­genic tem­per­a­tures are needed at the less ex­plored C-band fre­quency (5.712 GHz), which is of great in­ter­est for the afore­men­tioned con­cepts. On be­half of a large col­lab­o­ra­tion of UCLA, SLAC, LANL, and INFN, the first C-band cryo­genic break­down mea­sure­ments will be made using a LANL RF test in­fra­struc­ture. The 2-cell geom­e­try de­signed for test­ing will be mod­i­fi­ca­tions of the dis­trib­uted cou­pled reen­trant de­sign used to ef­fi­ciently power the cells while stay­ing below the lim­it­ing val­ues of peak sur­face elec­tric and mag­netic fields.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-TUPA81  
About • Received ※ 29 July 2022 — Accepted ※ 02 August 2022 — Issue date ※ 08 August 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPA26 197 MHz Waveguide Loaded Crabbing Cavity Design for the Electron-Ion Collider cavity, HOM, impedance, electron 679
 
  • S.U. De Silva, J.R. Delayen
    ODU, Norfolk, Virginia, USA
  • J. Guo, R.A. Rimmer
    JLab, Newport News, Virginia, USA
  • Z. Li
    SLAC, Menlo Park, California, USA
  • B.P. Xiao
    BNL, Upton, New York, USA
 
  The Elec­tron-Ion Col­lider will re­quire crab­bing sys­tems at both hadron and elec­tron stor­age rings in order to reach the de­sired lu­mi­nos­ity goal. The 197 MHz crab cav­ity sys­tem is one of the crit­i­cal rf sys­tems of the col-lider. The crab cav­ity, based on the rf-di­pole de­sign, ex-plores the op­tion of wave­guide load damp­ing to sup­press the higher order modes and meet the tight im­ped­ance spec­i­fi­ca­tions. The cav­ity is de­signed with com­pact dog-bone wave­guides with tran­si­tions to rec­tan­gu­lar wave-guides and wave­guide loads. This paper pre­sents the com­pact 197 MHz crab cav­ity de­sign with wave­guide damp­ing and other an­cil­lar­ies.  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-WEPA26  
About • Received ※ 08 August 2022 — Revised ※ 09 August 2022 — Accepted ※ 11 August 2022 — Issue date ※ 06 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPA53 An Open Radiofrequency Accelerating Structure coupling, gun, impedance, SRF 753
 
  • S.V. Kuzikov
    Euclid TechLabs, Solon, Ohio, USA
 
  We re­port an open multi-cell ac­cel­er­at­ing struc­ture. Being in­te­grated with a set of open-end wave­guides, this struc­ture can sup­press high-or­der modes (HOMs). All the ac­cel­er­at­ing cells are con­nected at the side to rec­tan­gu­lar cross-sec­tion wave­guides which strongly cou­pled with free space or ab­sorbers. Due to the anti-phased con­tri­bu­tion of the cell pairs, the op­er­at­ing mode does not leak out, and has as high-qual­ity fac­tor as for a closed ac­cel­er­at­ing struc­ture. How­ever, the com­pen­sa­tion does not occur for spu­ri­ous high-or­der modes. This op­er­at­ing prin­ci­ple also al­lows for strong cou­pling be­tween the cells of the struc­ture, which is why high ho­mo­gene­ity of the ac­cel­er­at­ing fields can be pro­vided along the struc­ture. We dis­cuss the ob­tained sim­u­la­tion re­sults and pos­si­ble ap­pli­ca­tions. Its in­clude a nor­mal con­duct­ing high-shunt im­ped­ance ac­cel­er­a­tor, a tun­able pho­toin­jec­tor’s RF gun, and a high-cur­rent, high-se­lec­tive SRF ac­cel­er­a­tors.  
poster icon Poster WEPA53 [1.817 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-WEPA53  
About • Received ※ 01 August 2022 — Revised ※ 08 August 2022 — Accepted ※ 12 August 2022 — Issue date ※ 16 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPA64 Design and Commissioning of the ASU CXLS Machine Protection System controls, klystron, detector, machine-protect 770
 
  • S.P. Jachim, B.J. Cook, J.R.S. Falconer, A.J. Gardeck, W.S. Graves, M.R. Holl, R.S. Rednour, D.M. Smith, J.V. Vela
    Arizona State University, Tempe, USA
 
  Funding: This work was supported in part by NSF award #1935994.
To pro­tect against fault con­di­tions in the high-power RF trans­port and ac­cel­er­at­ing struc­tures of the Ari­zona State Uni­ver­sity (ASU) Com­pact X-Ray Light Source (CXLS), the Ma­chine Pro­tec­tion Sys­tem (MPS) ex­tin­guishes the 6.5-MW RF en­ergy sources within ap­prox­i­mately 50 ns of the fault event. In ad­di­tion, each fault is lo­cal­ized and re­ported re­motely via USB for op­er­a­tional and main­te­nance pur­poses. This paper out­lines the re­quire­ments, de­sign, and per­for­mance of the MPS ap­plied on the CXLS.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-WEPA64  
About • Received ※ 13 July 2022 — Revised ※ 28 July 2022 — Accepted ※ 08 August 2022 — Issue date ※ 12 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPA65 On-Chip Photonics Integrated Photocathodes electron, photon, cathode, coupling 773
 
  • A.H. Kachwala, O. Chubenko, S.S. Karkare
    Arizona State University, Tempe, USA
  • R. Ahsan
    USC, Los Angeles, California, USA
  • H.U. Chae, R. Kapadia
    University of Southern California, Los Angeles, California, USA
 
  Funding: This work is supported by the NSF Center for Bright Beams under award PHY-1549132, and by the Department of Energy, Office of Science under awards DE-SC0021092, and DE-SC0021213.
Pho­ton­ics in­te­grated pho­to­cath­odes can re­sult in ad­vanced elec­tron sources for var­i­ous ac­cel­er­a­tor ap­pli­ca­tions. In such pho­to­cath­odes, light can be di­rected using wave­guides and other pho­tonic com­po­nents on the sub­strate un­der­neath a pho­toe­mis­sive film to gen­er­ate elec­tron emis­sion from spe­cific lo­ca­tions at sub-mi­cron scales and at spe­cific times at 100-fem­tosec­ond scales along with trig­ger­ing novel pho­toe­mis­sion mech­a­nisms re­sult­ing in brighter elec­tron beams and en­abling un­prece­dented spa­tio-tem­po­ral shap­ing of the emit­ted elec­trons. In this work we have demon­strated pho­toe­mis­sion con­fined in the trans­verse di­rec­tion using a nanofab­ri­cated Si3N4 wave­guide un­der­neath a 40-nm thick ce­si­ated GaAs pho­toe­mis­sive film, thus demon­strat­ing a proof of prin­ci­ple fea­si­bil­ity of such pho­ton­ics in­te­grated pho­to­cath­odes. This work paves the way to in­te­grate the ad­vances in the field of pho­ton­ics and nanofab­ri­ca­tion with pho­to­cath­odes to de­velop bet­ter elec­tron sources.
 
poster icon Poster WEPA65 [0.642 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-WEPA65  
About • Received ※ 26 July 2022 — Revised ※ 06 August 2022 — Accepted ※ 07 August 2022 — Issue date ※ 10 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)