MOYD —  Colliders   (08-Aug-22   10:30—12:30)
Chair: F.C. Pilat, ORNL, Oak Ridge, Tennessee, USA
Paper Title Page
MOYD1
Progress on the Electron-Ion Collider  
 
  • F.J. Willeke
    BNL, Upton, New York, USA
  • A. Seryi
    JLab, Newport News, Virginia, USA
 
  Funding: DOE-NP
We will be reporting on the progress of the design and preparatory R&D for the Electron-Ion Collider.
 
slides icon Slides MOYD1 [14.251 MB]  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOYD2
Options for Future Colliders on Fermilab Site  
 
  • P.C. Bhat
    Fermilab, Batavia, Illinois, USA
  • M.A. Palmerpresenter
    BNL, Upton, New York, USA
 
  As part of the Snowmass’21 effort, the Fermilab Collider Group has considered several options of future colliders which would fit the FNAL site boundaries. Here we present the most feasible opportunities and discuss their energy reach, luminosity potential and physics case, technical and financial feasibility.  
slides icon Slides MOYD2 [7.936 MB]  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOYD3 EIC Transverse Emittance Growth Due to Crab Cavity RF Noise: Estimates and Mitigation 6
 
  • T. Mastoridis, P. Fuller, P. Mahvi, Y. Matsumura
    CalPoly, San Luis Obispo, California, USA
 
  Funding: This work is partially supported by the U.S. Department of Energy, Office of Science, Office of High Energy Physics, under Award Number DE-SC-0019287.
The Electron-Ion Collider (EIC) requires crab cavities to compensate for a 25 mrad crossing angle and achieve maximum luminosity. The crab cavity Radio Frequency (RF) system will inject low levels of noise to the crabbing field, generating transverse emittance growth and potentially limiting luminosity lifetime. In this work, we estimate the transverse emittance growth rate as a function of the Crab Cavity RF noise and quantify RF noise specifications for reasonable performance. Finally, we evaluate the possible mitigation of the RF noise induced emittance growth via a dedicated feedback system.
 
slides icon Slides MOYD3 [0.223 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOYD3  
About • Received ※ 28 July 2022 — Revised ※ 01 August 2022 — Accepted ※ 07 August 2022 — Issue date ※ 04 October 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOYD4 Model Parameters Determination in EIC Strong-Strong Simulation 9
 
  • D. Xu, C. Montag
    BNL, Upton, New York, USA
  • Y. Hao
    FRIB, East Lansing, Michigan, USA
  • Y. Luo
    Brookhaven National Laboratory (BNL), Electron-Ion Collider, Upton, New York, USA
  • J. Qiang
    LBNL, Berkeley, California, USA
 
  The ion beam is sensitive to numerical noise in the strong-strong simulation of the Electron-Ion Collider (EIC). This paper discusses the impact of model parameters — macro particles, transverse grids and longitudinal slices — on beam size evolution in PIC based strong-strong simulation. It will help us to understand the emittance growth in strong-strong simulation.  
slides icon Slides MOYD4 [0.849 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOYD4  
About • Received ※ 02 August 2022 — Revised ※ 03 August 2022 — Accepted ※ 10 August 2022 — Issue date ※ 11 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOYD5 Tolerances of Crab Dispersion at the Interaction Point in the Hadron Storage Ring of the Electron-Ion Collider 12
 
  • Y. Luo, J.S. Berg, M. Blaskiewicz, C. Montag, V. Ptitsyn, F.J. Willeke, D. Xu
    BNL, Upton, New York, USA
  • Y. Hao
    FRIB, East Lansing, Michigan, USA
  • V.S. Morozov
    ORNL RAD, Oak Ridge, Tennessee, USA
  • J. Qiang
    LBNL, Berkeley, California, USA
  • T. Satogata
    JLab, Newport News, Virginia, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy.
The Electron Ion Collider (EIC) presently under construction at Brookhaven National Laboratory will collide polarized high energy electron beams with hadron beams with luminosity up to 1034 cm-2 s-1 in the center mass energy range of 20 to 140 GeV. Due to the detector solenoid in the interaction region, the design horizontal crabbing angle will be coupled to the vertical plane if uncompensated. In this article, we estimate the tolerance of crab dispersion at the interaction point in the EIC Hadron Storage Ring (HSR). Both strong-strong and weak-strong simulations are used. We found that there is a tight tolerance of vertical crabbing angle at the interaction point in the HSR.
 
slides icon Slides MOYD5 [1.183 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOYD5  
About • Received ※ 01 August 2022 — Accepted ※ 04 August 2022 — Issue date ※ 15 August 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOYD6
Chromatic Correction of the EIC Electron Ring Lattice  
 
  • Y. Cai, Y.M. Nosochkov
    SLAC, Menlo Park, California, USA
  • J.S. Berg, J. Kewisch, Y. Li, D. Marx, C. Montag, S. Tepikian, F.J. Willeke
    BNL, Upton, New York, USA
  • G.H. Hoffstaetter, J.E. Unger
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  We have developed a new chromatic compensation scheme for the electron storage ring with two low-beta interaction regions in the electron-ion collider. The hybrid scheme consists of modular chromatic matching of periodic systems and beamlines. The first-order chromatically matched solutions are linearly parameterized with the local linear chromaticities that control the higher order chromatic beatings. The parameterization enables an efficient optimization of dynamic aperture. As a result, we successfully achieve the 1% design criterion for the momentum aperture in the ring.  
slides icon Slides MOYD6 [1.667 MB]  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)