Keyword: sextupole
Paper Title Other Keywords Page
MOPA81 Study of Nonlinear Dynamics in the 4-D Hénon Map Using the Square Matrix Method and Iterative Methods resonance, dynamic-aperture, linear-dynamics, lattice 232
  • K.J. Anderson, Y. Hao
    FRIB, East Lansing, Michigan, USA
  • L.H. Yu
    BNL, Upton, New York, USA
  Funding: Accelerator Stewardship program under award number DE-SC0019403 US Department of Energy, Office of Science, High Energy Physics under award number DE-SC0018362 and Michigan State University
The Hénon Map represents a linear lattice with a single sextupole kick. This map has been extensively studied due to its chaotic behavior. The case for the two dimensional phase space has recently been revisited using ideas from KAM theory to create an iterative process that transforms nonlinear perturbed trajectories into rigid rotations*. The convergence of this method relates to the resonance structure and can be used as an indicator of the dynamic aperture. The studies of this method have been extended to the four dimensional phase space case which introduces coupling between the transverse coordinates.
*Hao, Y., Anderson, K., & Yu, L. H. (2021, August). Revisit of Nonlinear Dynamics in Hénon Map Using Square Matrix Method.
poster icon Poster MOPA81 [3.103 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA81  
About • Received ※ 19 July 2022 — Revised ※ 04 August 2022 — Accepted ※ 15 August 2022 — Issue date ※ 26 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
TUPA17 Beam-Based Alignment of Sextupole Families in the EIC kicker, alignment, lattice, closed-orbit 378
  • J.C. Wang, G.H. Hoffstaetter, D. Sagan
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • C. Montag
    BNL, Upton, New York, USA
  To steer the closed orbit in a storage ring through the center of its quadrupoles, it is important to accurately know the quadrupole centers relative to nearby beam position monitors. Usually this is achieved by beam-based alignment (BBA). Assuming the quadrupole strength can be changed individually, one finds the BPM reading where changing a quadrupole’s strength does not alter the closed orbit. Since most quadrupoles are powered in series, they can only be varied independently if costly power supplies are added. For the EIC electron storage ring (ESR), we investigate whether sextupole BBA can be used instead. Individually powered sextupole BBA techniques already exist, but most sextupoles are powered in families and cannot be individually changed. We therefore developed a method where a localized bump changes the beam excursion in a single sextupole of a family, turning off all families that also have sextupoles in the bump. The bump amplitude at which the sextupole does not cause a closed orbit kick determines the sextupole’s alignment. This study was made to investigate the precision to which this method can be utilized.  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-TUPA17  
About • Received ※ 04 August 2022 — Revised ※ 08 August 2022 — Accepted ※ 10 August 2022 — Issue date ※ 29 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
TUPA29 Machine Learning for Predicting Power Supply Trips in Storage Rings storage-ring, power-supply, network, quadrupole 413
  • I. Lobach, M. Borland, G.I. Fystro, A. Sannibale, Y. Sun
    ANL, Lemont, Illinois, USA
  • A. Diaw, J.P. Edelen
    RadiaSoft LLC, Boulder, Colorado, USA
  Funding: The work is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.
In the Advanced Photon Source (APS) storage ring at Argonne National Lab, trips in the magnet power supplies (PSs) lead to a complete electron beam loss a few times a year. This results in unexpected interruptions of the users’ experiments. In this contribution, we investigate the historical data for the last two decades to find precursors for the PS trips that could provide an advance notice for future trips and allow some preventive action by the ring operator or by the PS maintenance team. Various unsupervised anomaly detection models can be trained on the vast amounts of available reference data from the beamtime periods that ended with an intentional beam dump. We find that such models can sometimes detect trip precursors in PS currents, voltages, and in the temperatures of magnets, capacitors and transistors (components of PSs).
poster icon Poster TUPA29 [2.116 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-TUPA29  
About • Received ※ 03 August 2022 — Revised ※ 07 August 2022 — Accepted ※ 10 August 2022 — Issue date ※ 18 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
WEXD2 Storage Ring Tracking Using Generalized Gradient Representations of Full Magnetic Field Maps lattice, dipole, emittance, quadrupole 542
  • R.R. Lindberg, M. Borland
    ANL, Lemont, Illinois, USA
  Funding: This work was supported by U.S. Dept. of Energy Office of Sciences under Contract No. DE-AC02-06CH11357.
We have developed a set of tools to simulate particle dynamics in the full magnetic field using the generalized gradients representation. Generalized gradients provide accurate and analytic representations of the magnetic field that allow for symplectic tracking [1]. We describe the tools that convert magnetic field data into generalized gradients representations suitable for tracking in Elegant, and discuss recent results based upon tracking with the full field representations for all magnets in the APS-U storage ring.
[1] A. Dragt. Lie Methods for Nonlinear Dynamics with Applications to Accelerator Physics. University of Maryland (2019).
slides icon Slides WEXD2 [3.841 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-WEXD2  
About • Received ※ 16 July 2022 — Accepted ※ 29 July 2022 — Issue date ※ 04 August 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)