Keyword: quadrupole
Paper Title Other Keywords Page
MOPA08 Beamline Optimization Methods for High Intensity Muon Beams at PSI dipole, experiment, target, solenoid 63
 
  • E.V. Valetov
    PSI, Villigen PSI, Switzerland
 
  Funding: This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 884104 (PSI-FELLOW-III-3i).
We perform beamline design optimization for the High Intensity Muon Beams (HIMB) project at the Paul Scherrer Institute (PSI), which will deliver muon beams at the unprecedented rate of 1·1010 muons/s to next-generation intensity frontier particle physics and material science experiments. For optimization of the design and operational parameters to maximize the beamline transmission, we use the asynchronous Bayesian optimization package DeepHyper and a custom build of G4beamline with variance reduction and measured cross sections. We minimize the beam spot size at the final foci using a COSY INFINITY model with differential-algebraic system knobs, where we minimize the respective transfer map elements using the Levenberg-Marquardt and simulated annealing optimizers. We obtained a transmission of 1.34·1010 muons/s in a G4beamline model of HIMB’s MUH2 beamline into the experimental area.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA08  
About • Received ※ 02 August 2022 — Revised ※ 08 August 2022 — Accepted ※ 11 August 2022 — Issue date ※ 23 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPA09 Design of a 4D Emittance Diagnostic for Low-Energy Ion Beams diagnostics, emittance, simulation, linac 67
 
  • T.R. Curtin, M.S. Curtin
    Ion Linac Systems, Inc., Albuquerque, USA
 
  Characterization of ion beams from an ion injector consisting of an electron-cyclotron-resonance (ECR) source in combination with a low-energy-beam-transport (LEBT) typically exhibits a complex four-dimensional transverse phase-space distribution. The importance of measuring the ion beam correlations following extraction and transport of the low-energy beam is critical to enabling optimization of beam transmission through downstream accelerating structures. A design for a transverse, four-dimensional emittance meter for low-energy protons from the Ion Linac Systems (ILS) ECR-LEBT ion injector is provided.  
poster icon Poster MOPA09 [0.479 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA09  
About • Received ※ 03 August 2022 — Revised ※ 27 September 2022 — Accepted ※ 05 December 2022 — Issue date ※ 05 December 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPA19 The Effect of the Main Injector Ramp on the Recycler focusing, dipole, operation, shielding 90
 
  • N. Chelidze, R. Ainsworth, K.J. Hazelwood
    Fermilab, Batavia, Illinois, USA
 
  The Recycler and Main Injector are part of the Fermilab Accelerator complex used to deliver a high power proton beam. Both machines share the same enclosure with the Recycler mounted 6 ft above the Main Injector. The Main Injector accelerates beam from 8 GeV to 120 GeV. While the majority of the Recycler has mu metal shielding, the effect of the Main Injector ramp is still significant and can affect both the tunes and the orbit. In this paper, we detail the size of these effects.  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA19  
About • Received ※ 02 August 2022 — Accepted ※ 04 August 2022 — Issue date ※ 23 August 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPA36 Optimization of Superconducting Linac for Proton Improvement Plan-II (PIP-II) emittance, linac, cavity, solenoid 132
 
  • A. Pathak, E. Pozdeyev
    Fermilab, Batavia, Illinois, USA
 
  PIP-II is an essential upgrade of the Fermilab complex that will enable the world’s most intense high-energy beam of neutrinos for the international Deep Underground Neutrino Experiment at LBNF and support a broad physics program at Fermilab. Ultimately, the PIP-II superconducting linac will be capable of accelerating the H CW beam to 800 MeV with an average power of 1.6 MW. To operate the linac with such high power, beam losses and beam emittance growth must be tightly controlled. In this paper, we present the results of global optimization of the Linac options towards a robust and efficient physics design for the superconducting section of the PIP-II linac. We also investigate the impact of the nonlinear field of the dipole correctors on the beam quality and derive the requirement on the field quality using statistical analysis. Finally, we assess the need to correct the quadrupole focusing produced by Half Wave, and Single Spoke accelerating cavities. We assess the feasibility of controlling the beam coupling in the machine by changing the polarity of the field of Linac focusing solenoids  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA36  
About • Received ※ 02 August 2022 — Revised ※ 04 August 2022 — Accepted ※ 10 August 2022 — Issue date ※ 01 October 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPA42 Considerations Concerning the Use of HTS Conductor for Accelerator Dipoles with Inductions above 15 T dipole, induction, superconductivity, niobium 143
 
  • M.A. Green
    LBNL, Berkeley, California, USA
 
  Funding: This work was supported by the office of Science, under US Department of Energy contract number DE-AC-02-05CH11231.
The use of high temperature superconductors for accelerator dipole has been discussed for about twenty years and maybe a little more. Conductors that can potentially be used for accelerator magnets have been available for about fifteen years. These conductors are REBCO tape conductors, which can be wound into coils with no reaction after winding, and BISSCO cable conductors, which require reaction after winding and insulation after reaction in a process similar to Nb3Sn cables. Both conductors are expensive and the process after reacting is expensive. Some unknown factors that remain: Will either conductor degrade in current carrying capacity with repeated cycling like Nb3Sn cables do? The other two issues are problems for both types of HTS conductors and they are; 1) quench protection in the event of a normal region run-away and 2) dealing with the superconducting magnetization inherent with HTS cables and tapes. This paper will discuss the last two issues and maybe will provide a partial solution to these problems.
 
poster icon Poster MOPA42 [1.498 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA42  
About • Received ※ 01 August 2022 — Revised ※ 08 August 2022 — Accepted ※ 11 August 2022 — Issue date ※ 23 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPA64 Circular Modes for Mitigating Space-Charge Effects and Enabling Flat Beams space-charge, emittance, optics, coupling 189
 
  • O. Gilanliogullari
    IIT, Chicago, Illinois, USA
  • B. Mustapha
    ANL, Lemont, Illinois, USA
  • P. Snopok
    Illinois Institute of Technology, Chicago, Illlinois, USA
 
  Funding: This work was supported by the U.S. Department of Energy, under Contract No. DE-AC02-06CH11357
Flat beams are preferred in high-intensity accelerators and high-energy colliders due to one of the transverse plane emittances being smaller, which enhances luminosity and beam brightness. However, flat beams are devastating at low energies due to space charge forces which are significantly enhanced in one plane. The same is true, although to a lesser degree, for non-symmetric elliptical beams. In order to mitigate this effect, circular mode beam optics can be used. In this paper, we show that circular mode beams dilute space charge effects at lower energies, and can be transformed to flat beams later on.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA64  
About • Received ※ 09 August 2022 — Revised ※ 11 August 2022 — Accepted ※ 12 August 2022 — Issue date ※ 23 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPA69 Adjoint Optimization Applied to Flat to Round Transformers solenoid, lattice, space-charge, electron 199
 
  • T.M. Antonsen, B.L. Beaudoin, S. Bernal, L. Dovlatyan, I. Haber, P.G. O’Shea, D.F. Sutter
    UMD, College Park, Maryland, USA
 
  Funding: This work was supported by DOE-HEP Awards No. DESC0010301 and DESC0022009
We present the numerical optimization, using adjoint techniques, of Flat-to-Round (FTR) transformers operating in the strong self-field limit. FTRs transform an unmagnetized beam that has a high aspect ratio, elliptical spatial cross section, to a round beam in a solenoidal magnetic field. In its simplest form the flat to round conversion is accomplished with a triplet of quadrupoles, and a solenoid. FTR transformers have multiple applications in beam physics research, including manipulating electron beams to cool co-propagating hadron beams. Parameters that can be varied to optimize the FTR conversion are the positions and strengths of the four magnet elements, including the orientations and axial profiles of the quadrupoles and the axial profile and strength of the solenoid’s magnetic field. The adjoint method we employ [1] allows for optimization of the lattice with a minimum computational effort including self-fields. The present model is based on a moment description of the beam. However, the generalization to a particle description will be presented. The optimized designs presented here will be tested in experiments under construction at the University of Maryland.
[1] Optimization of Flat to Round Transformers with self-fields using adjoint techniques, L. Dovlatyan, B. Beaudoin, S. Bernal, I. Haber, D. Sutter and TMA, PhysRevAccelBeams.25.044002 (2022).
 
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA69  
About • Received ※ 03 August 2022 — Revised ※ 25 September 2022 — Accepted ※ 05 December 2022 — Issue date ※ 05 December 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPA75 Machine Learning for Slow Spill Regulation in the Fermilab Delivery Ring for Mu2e controls, extraction, experiment, target 214
 
  • A. Narayanan
    Northern Illinois University, DeKalb, Illinois, USA
  • J.M.S. Arnold, M.R. Austin, J.R. Berlioz, P.M. Hanlet, K.J. Hazelwood, M.A. Ibrahim, V.P. Nagaslaev, D.J. Nicklaus, G. Pradhan, P.S. Prieto, A.L. Saewert, B.A. Schupbach, K. Seiya, R.M. Thurman-Keup, N.V. Tran
    Fermilab, Batavia, Illinois, USA
  • J. Jiang, H. Liu, S. Memik, R. Shi, M. Thieme, D. Ulusel
    Northwestern University, Evanston, Illinois, USA
 
  Funding: Work done partly (READS) collaboration at Fermilab (Grant Award No. LAB 20-2261). Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-07CH11359.
A third-integer resonant slow extraction system is being developed for the Fermilab’s Delivery Ring to deliver protons to the Mu2e experiment. During a slow extraction process, the beam on target is liable to experience small intensity variations due to many factors. Owing to the experiment’s strict requirements in the quality of the spill, a Spill Regulation System (SRS) is currently under design. The SRS primarily consists of three components - slow regulation, fast regulation, and harmonic content tracker. In this presentation, we shall present the investigations of using Machine Learning (ML) in the fast regulation system, including further optimizations of PID controller gains for the fast regulation, prospects of an ML agent completely replacing the PID controller using supervised learning schemes such as Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) ML models, the simulated impact and limitation of machine response characteristics on the effectiveness of both PID and ML regulation of the spill. We also present here nascent results of Reinforcement Learning efforts, including continuous-action soft actor-critic methods, to regulate the spill rate.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA75  
About • Received ※ 03 August 2022 — Revised ※ 08 August 2022 — Accepted ※ 18 September 2022 — Issue date ※ 05 October 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPA14 Fast First-Order Spin Propagation for Spin Matching and Polarization Optimization with Bmad polarization, lattice, solenoid, electron 369
 
  • J.M. Asimow, G.H. Hoffstaetter, D. Sagan, M.G. Signorelli
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Accurate spin tracking is essential for the simulation and propagation of polarized beams, in which a majority of the particles’ spin point in the same direction. Bmad, an open-sourced library for the simulation of charged particle dynamics, traditionally tracks spin via integrating through each element of a lattice. While exceptionally accurate, this method has the drawback of being slow; at best, the runtime is proportional to the length of the element. By solving the spin transport equation for simple magnet elements, Bmad can reduce this algorithm to constant runtime while maintaining high accuracy. This method, known as "Sprint," enables quicker spin matching and prototyping of lattice designs via Bmad.  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-TUPA14  
About • Received ※ 30 July 2022 — Revised ※ 09 August 2022 — Accepted ※ 10 August 2022 — Issue date ※ 24 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPA18 Promise and Challenges of a Method for 5x5 Sigma Matrix Measurement in a Transport Line booster, extraction, emittance, simulation 382
 
  • M. Borland, V. Sajaev, K.P. Wootton
    ANL, Lemont, Illinois, USA
 
  Funding: Work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.
The Advanced Photon Source (APS) is upgrading the storage ring to a design that requires on-axis injection. Matching between the incoming beam and the ring is important to ensure high injection efficiency. Toward this end, we have developed and tested a method for measuring all σ matrix elements except those related to the time coordinate. We report on challenges inherent in this technique, based on simulation and real-world trials.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-TUPA18  
About • Received ※ 29 July 2022 — Accepted ※ 05 August 2022 — Issue date ※ 29 September 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPA26 Fringe Field Maps for Cartesian Dipoles with Longitudinal and/or Transverse Gradients dipole, photon, focusing, lattice 401
 
  • R.R. Lindberg, M. Borland
    ANL, Lemont, Illinois, USA
 
  Funding: This work was supported by U.S. Dept. of Energy Office of Sciences under Contract No. DE-AC02-06CH11357.
Fringe fields effects in dipoles can give rise to important linear and nonlinear contributions. This paper describes how to extend the classic results of Brown [1] and the more recent calculations of Hwang and Lee [2] to Cartesian dipoles with transverse and/or longitudinal gradients. We do this by 1) introducing a more general definition of the fringe field that can be applied to longitudinal gradient dipoles, 2) allowing for quadrupole and/or sextupole content in the magnet body, and 3) showing how to employ the resulting fringe field maps as a symplectic transformation of the coordinates. We compare our calculation results with tracking for longitudinal and transverse gradient dipoles planned for the APS-U.
[1] K.L. Brown, Report SLAC-75, 1982.
[2] K. Hwang and S.Y. Lee, Phys. Rev. Accel. Beams, vol. 18, p. 122401 2015.
 
poster icon Poster TUPA26 [2.090 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-TUPA26  
About • Received ※ 26 July 2022 — Revised ※ 11 August 2022 — Accepted ※ 12 August 2022 — Issue date ※ 21 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPA29 Machine Learning for Predicting Power Supply Trips in Storage Rings storage-ring, power-supply, network, sextupole 413
 
  • I. Lobach, M. Borland, G.I. Fystro, A. Sannibale, Y. Sun
    ANL, Lemont, Illinois, USA
  • A. Diaw, J.P. Edelen
    RadiaSoft LLC, Boulder, Colorado, USA
 
  Funding: The work is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.
In the Advanced Photon Source (APS) storage ring at Argonne National Lab, trips in the magnet power supplies (PSs) lead to a complete electron beam loss a few times a year. This results in unexpected interruptions of the users’ experiments. In this contribution, we investigate the historical data for the last two decades to find precursors for the PS trips that could provide an advance notice for future trips and allow some preventive action by the ring operator or by the PS maintenance team. Various unsupervised anomaly detection models can be trained on the vast amounts of available reference data from the beamtime periods that ended with an intentional beam dump. We find that such models can sometimes detect trip precursors in PS currents, voltages, and in the temperatures of magnets, capacitors and transistors (components of PSs).
 
poster icon Poster TUPA29 [2.116 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-TUPA29  
About • Received ※ 03 August 2022 — Revised ※ 07 August 2022 — Accepted ※ 10 August 2022 — Issue date ※ 18 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPA32 SCU Ends Configured as Phase Shifter undulator, simulation, FEL, electron 420
 
  • M.F. Qian
    ANL, Lemont, Illinois, USA
 
  Funding: Work supported by LDRD funding from Argonne National Laboratory, provided by the Director, Office of Science, of the U.S. DOE under Contract No. DE-AC02-06CH11357.
Dipole correctors and phase shifters are usually needed in the interspace of a permanent magnet (PM)-based undulator array for purposes of beam steering and phase matching when the field strength is changing. Unlike the PM-based undulators, the superconducting undulator (SCU) can change its end field with the help of varying currents in the end coils. By setting the end coil currents the beam-steering and the phase-matching could be realized, thus eliminating the need for standalone correctors and phase shifters, saving the interspace as well as reducing the mechanical complexity of an undulator array. We developed a procedure for determining the SCU end coil currents and verified it by numerical simulations. The procedure as well as the simulation results are described in this paper.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-TUPA32  
About • Received ※ 03 August 2022 — Revised ※ 08 August 2022 — Accepted ※ 10 August 2022 — Issue date ※ 07 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPA57 Electromagnetic and Beam Dynamics Modeling of the LANSCE Coupled-Cavity Linac cavity, linac, simulation, emittance 472
 
  • S.S. Kurennoy, Y.K. Batygin, D.V. Gorelov
    LANL, Los Alamos, New Mexico, USA
 
  The 800-MeV proton linac at LANSCE consists of a drift-tube linac, which brings the beam to 100 MeV, followed by a coupled-cavity linac (CCL) consisting of 44 modules. Each CCL module contains multiple tanks, and it is fed by a single 805-MHz klystron. CCL tanks are multi-cell blocks of identical re-entrant side-coupled cavities, which are followed by drifts with magnetic quadrupole doublets. Bridge couplers - special cavities displaced from the beam axis - electromagnetically couple CCL tanks over such drifts. We have developed 3D CST models of CCL tanks. Their electromagnetic analysis is performed using MicroWave Studio. Beam dynamics is modeled with Particle Studio for bunch trains with realistic beam distributions using the CST calculated RF fields and quadrupole magnetic fields to determine the output beam parameters. Beam dynamics results are crosschecked with other multi-particle codes.  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-TUPA57  
About • Received ※ 15 July 2022 — Revised ※ 01 August 2022 — Accepted ※ 08 August 2022 — Issue date ※ 19 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPA82 Transverse Stability in an Alternating Symmetry Planar Dielectric Wakefield Structure wakefield, simulation, experiment, accelerating-gradient 519
 
  • W.J. Lynn, G. Andonian, N. Majernik, S.M. OTool, J.B. Rosenzweig
    UCLA, Los Angeles, California, USA
  • D.S. Doran, S.Y. Kim, J.F. Power, E.E. Wisniewski
    ANL, Lemont, Illinois, USA
  • P. Piot
    Northern Illinois University, DeKalb, Illinois, USA
 
  Funding: DE-SC0017648 - AWA.
Dielectric Wakefield Acceleration (DWA) is a promising technique for realizing the next generation of linear colliders. It provides access to significantly higher accelerating gradients than traditional radio-frequency cavities. One impediment to realizing a DWA-powered accelerator is the issue of the transverse stability of the beams within the dielectric structure due to short-range wakefields. These short-range wakefields have a tendency to induce a phenomenon known as single-bunch beam breakup, which acts as its name implies and destroys the relevant beam. We attempt to solve this issue by leveraging the quadrupole mode excited in a planar dielectric structure and then alternating the orientation of said structure to turn an unstable system into a stable one. We examine this issue computationally to determine the limits of stability and based on those simulations describe a future experimental realization of this strategy.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-TUPA82  
About • Received ※ 02 August 2022 — Revised ※ 11 August 2022 — Accepted ※ 12 August 2022 — Issue date ※ 30 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEXD2 Storage Ring Tracking Using Generalized Gradient Representations of Full Magnetic Field Maps lattice, dipole, emittance, sextupole 542
 
  • R.R. Lindberg, M. Borland
    ANL, Lemont, Illinois, USA
 
  Funding: This work was supported by U.S. Dept. of Energy Office of Sciences under Contract No. DE-AC02-06CH11357.
We have developed a set of tools to simulate particle dynamics in the full magnetic field using the generalized gradients representation. Generalized gradients provide accurate and analytic representations of the magnetic field that allow for symplectic tracking [1]. We describe the tools that convert magnetic field data into generalized gradients representations suitable for tracking in Elegant, and discuss recent results based upon tracking with the full field representations for all magnets in the APS-U storage ring.
[1] A. Dragt. Lie Methods for Nonlinear Dynamics with Applications to Accelerator Physics. University of Maryland (2019).
 
slides icon Slides WEXD2 [3.841 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-WEXD2  
About • Received ※ 16 July 2022 — Accepted ※ 29 July 2022 — Issue date ※ 04 August 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPA34 Transfer Maps in the Hard-Edge Limit of Quadrupole and Bend Magnets Fringe Fields dipole, collider, space-charge, linear-dynamics 705
 
  • T.V. Gorlov
    ORNL, Oak Ridge, Tennessee, USA
 
  Funding: This work has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy.
Beam dynamics of charged particles in the fringe field of a quadrupole and a dipole magnet is considered. An effective method for solving symplectic Lie map exp(:f:) in such cases has been developed. A precise analytic solution for nonlinear transverse beam dynamics in a quadrupole magnet with hard-edge fringe field has been obtained. The method of Lie map calculation considered here can be applied for other magnets and for soft edge type of fringe field.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-WEPA34  
About • Received ※ 23 July 2022 — Revised ※ 29 July 2022 — Accepted ※ 07 August 2022 — Issue date ※ 12 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPA43 Self-Contained Linac Irradiator for the Sterile Insect Technique (SIT) electron, target, linac, simulation 728
 
  • A. Diego, R.B. Agustsson, R.D. Berry, S. Boucher, O. Chimalpopoca, S.V. Kutsaev, A.Yu. Smirnov, V.S. Yu
    RadiaBeam, Santa Monica, California, USA
  • S.J. Coleman
    RadiaSoft LLC, Boulder, Colorado, USA
 
  Funding: This work was financed by the US department of energy SBIR grant no. DE- SC0020010.
A 3-MeV X-band linac has been developed employing a cost-effective split structure design in order to replace radioactive isotope irradiators currently used for the Sterile Insect Technique (SIT) and other applications. The penetration of a Co-60 irradiator can be matched with Bremsstrahlung produced by a 3-MeV electron beam. The use of electron accelerators eliminates security risks and hazards inherent with radioactive sources. We present the current state of this X-band split structure linac and the rest of the irradiator system.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-WEPA43  
About • Received ※ 04 August 2022 — Revised ※ 06 August 2022 — Accepted ※ 12 August 2022 — Issue date ※ 16 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPA44 Compact Inter-Undulator Diagnostic Assembly for TESSA-515 undulator, electron, radiation, diagnostics 732
 
  • T.J. Hodgetts, R.B. Agustsson, Y.C. Chen, A.Y. Murokh, M. Ruelas
    RadiaBeam, Santa Monica, California, USA
  • P.E. Denham, A.C. Fisher, J. Jin, P. Musumeci, Y. Park
    UCLA, Los Angeles, USA
 
  Funding: DOE grant DE-SC0009914, DE-SC0018559, and DE-SC0017102.
Beamline space is a very expensive and highly sought-after commodity, which makes the creation of compact integrated optics and diagnostics extremely valuable. The FAST- GREENS experimental program aims at demonstrating 10 % extraction efficiency from a relativistic electron beam using four helical undulators operating in the high gain TESSA regime. The inter-undulator gap needs to be as short as possible (17 cm in the current plans) to maximize the output power. Within this short distance, we needed to fit two focusing quadrupoles, a variable strength phase shifter, a transverse profile monitor consisting of a YAG-OTR combination for co-aligning the electron beam and laser, and an ion pump. By making the quadrupoles tunable with a variable gradient, in combination with vertical displacement, we can meet the optics requirements of matching the beam transversely to the natural focusing of the undulators. The two quadrupoles in conjunction with the electromagnetic dipole also serve as a phase shifter to realign the radiation and the bunching before each undulator section. This paper will discuss the mechanical design of this inter-undulator break section and its components.
 
poster icon Poster WEPA44 [0.752 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-WEPA44  
About • Received ※ 27 July 2022 — Revised ※ 03 August 2022 — Accepted ※ 08 August 2022 — Issue date ※ 11 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPA71 Unified Orbit Feedback at NSLS-II feedback, operation, target, photon 795
 
  • Y. Hidaka, Y. Li, R.M. Smith, Y. Tian, G.M. Wang, X. Yang
    BNL, Upton, New York, USA
 
  Funding: This work is supported by U.S. DOE under Contract No. DE-SC0012704.
We have developed an orbit correction / feedback program to unify the existing orbit-related feedback systems for stable beam operation at NSLS-II. Until recently only a handful of beamlines have been benefiting from long-term orbit stability provided by a local bump agent program. To expand this to all the beamlines as well as correct more frequently, a new slow orbit feedback program called unified orbit feedback (UOFB) was written from scratch that works with the fast orbit feedback transparently, while accumulated fast corrector strength is continuously shifted to the slow correctors and RF frequency is adjusted for circumference change. UOFB can lock 3 different types of local bumps to the target offsets/angles for days: those for insertion device (ID) sources with only ID RF beam position monitors (BPM) or mixtures of ID RF BPMs and X-ray BPMs, and those for bending magnet sources with arc BPMs between which orbit correctors, dipoles and quadrupoles exist. Furthermore, this feed-back can accommodate beamline user requests to enable / disable the feedback loop for their beamline and to change bump target setpoints without turning off the loop.
 
poster icon Poster WEPA71 [2.541 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-WEPA71  
About • Received ※ 02 August 2022 — Revised ※ 09 August 2022 — Accepted ※ 12 August 2022 — Issue date ※ 31 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPA74 Characterization of Fully Coupled Linear Optics with Turn-by-Turn Data optics, lattice, coupling, resonance 805
 
  • Y. Li, R.S. Rainer, V.V. Smaluk
    BNL, Upton, New York, USA
 
  Funding: This research used resources of the NSLS-II, a U.S. DOE Office of Science User Facility operated for the DOE Office of Science by Brookhaven National Laboratory under Contract No. DE-SC0012704.
In the future diffraction-limited light source rings, fully coupled linear optics to generate round beams is preferable. While machine tune approaching to linear difference resonances, small random errors, such as quadrupole rolls, can result in fully coupled optics. Consequently, some uncertainty exists in such optics due to random errors distributions. Given beam position monitors turn-by-turn readings, the harmonic analysis method was used to characterize the coupled Ripken Twiss parameters.
 
poster icon Poster WEPA74 [0.889 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-WEPA74  
About • Received ※ 25 July 2022 — Revised ※ 30 July 2022 — Accepted ※ 08 August 2022 — Issue date ※ 19 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPA77 A New PCB Rotating Coil at NSLS-II dipole, emittance, permanent-magnet, lattice 816
 
  • M. Musardo, J. Avronsart, F.A. DePaola, L. Doom, R. Faussete, F.C. Lincoln, S.K. Sharma, T. Tanabe
    BNL, Upton, New York, USA
  • D. Assell, J. DiMarco
    Fermilab, Batavia, Illinois, USA
  • A. Banerjee
    SBU, Stony Brook, New York, USA
  • C.L. Doose, A.K. Jain
    ANL, Lemont, Illinois, USA
 
  Several R&D projects are underway at NSLS-II towards an upgrade of its storage ring with a new lattice that will use high field magnets with small bores of 16-22 mm. A large fraction of the high field magnets are expected to be of permanent magnet technology that will require precise magnetic measurements and field harmonics corrections. A new magnetic measurement bench has been built based on a printed circuit board (PCB) coil of 12 mm diameter and 270 mm active length. This PCB coil has the capabil-ity of measuring field quality to a level of 10 ppm of the main field up to the 15th harmonic with a sensitivity between 0.01 m2 and 0.02 m2 at the reference radius of 5 mm. This paper will describe the main features of the rotating coil bench and discuss the measurement results of a permanent-magnet Halbach quadrupole of 12.7 mm bore diameter.  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-WEPA77  
About • Received ※ 28 July 2022 — Revised ※ 06 August 2022 — Accepted ※ 12 August 2022 — Issue date ※ 29 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THYE3 Superconducting Undulators and Cryomodules for X-ray Free-Electron Lasers FEL, undulator, electron, alignment 870
 
  • D.C. Nguyen, G.J. Bouchard, B.M. Dunham, G.L. Gassner, Z. Huang, E.M. Kraft, P. Krejcik, M.A. Montironi, H.-D. Nuhn, T.O. Raubenheimer, Z.R. Wolf, Z. Zhang
    SLAC, Menlo Park, California, USA
  • J.M. Byrd, J.D. Fuerst, E. Gluskin, Y. Ivanyushenkov, M. Kasa, E.R. Moog, M.F. Qian, Y. Shiroyanagi
    ANL, Lemont, Illinois, USA
 
  Funding: Work supported by the US DOE Office of Science, Basic Energy Sciences, Office of Accelerator and Detector Research (Manager: Dr. Eliane Lessner).
We present connectable designs of superconducting undulators (SCU) and cryomodules (CM) based on previous SCU and CM designs at Argonne National Lab. The new SCU and CM designs will allow us to connect one CM to the next to form a contiguous line of SCUs with no breaks between the cryomodules. The SCU design will have correctors and phase shifters integrated into the main SCU magnet core, as well as external corrector magnets for trajectory corrections. There will also be a cryogenic magnetic quadrupole and a cold RF beam position monitor (BPM) integrated in the SCU CM. In addition to providing the usual FODO transverse focusing, the quadrupole and BPM will be used for the beam-based alignment technique that is critical for X-ray FEL operation. In this paper, we will present the conceptual design of the new SCU CM as well as results of FEL simulations using the SCUs as afterburners for the LCLS hard X-ray undulators.
 
slides icon Slides THYE3 [2.657 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-THYE3  
About • Received ※ 02 August 2022 — Revised ※ 07 August 2022 — Accepted ※ 08 August 2022 — Issue date ※ 16 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THZD3 Design of 3-GeV High-Gradient Booster for Upgraded Proton Radiography at LANSCE booster, proton, focusing, linac 891
 
  • Y.K. Batygin, S.S. Kurennoy
    LANL, Los Alamos, New Mexico, USA
 
  Funding: Work supported by US DOE under contract 89233218CNA000001
Increasing the proton beam energy from the present 800 MeV to 3 GeV will improve the resolution of the Proton Radiography Facility at the Los Alamos Neutron Science Center (LANSCE) by a factor of 10. It will bridge the gap between the existing facilities, which covers large length scales for thick objects, and future high-brightness light sources, which can provide the finest resolution. Proton radiography requires a sequence of short beam pulses (~20 x 80 ns) separated by intervals of variable duration, from about 300 ns to 1 to 2 μs. To achieve the required parameters, the high gradient 3-GeV booster is proposed. The booster consists of 1.4 GHz buncher, two accelerators based on 2.8 GHz and 5.6 GHz high-gradient accelerating structures and 1.4 GHz debuncher. Utilization of buncher-accelerator-debuncher scheme allows us to combine high-gradient acceleration with significant reduction of beam momentum spread. Paper discusses details of linac design and expected beam parameters.
 
slides icon Slides THZD3 [2.348 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-THZD3  
About • Received ※ 28 July 2022 — Revised ※ 06 August 2022 — Accepted ※ 08 August 2022 — Issue date ※ 04 October 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FRXD3 Measurements of the Five-Dimensional Phase Space Distribution of an Intense Ion Beam simulation, emittance, neutron, rfq 910
 
  • A.M. Hoover, A.V. Aleksandrov, S.M. Cousineau, K.J. Ruisard, A.P. Zhukov
    ORNL, Oak Ridge, Tennessee, USA
 
  Funding: Supported by the U.S. Department of Energy, Office of Science, Office of High Energy Physics; authored by UT- Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy.
No simulation of intense beam transport has accurately reproduced measurements at the level of beam halo. One potential explanation of this discrepancy is a lack of knowledge of the initial distribution of particles in six-dimensional (6D) phase space. A direct 6D measurement of an ion beam was recently performed at the Spallation Neutron Source (SNS) Beam Test Facility (BTF), revealing nonlinear transverse-longitudinal correlations in the beam core that affect downstream evolution. Unfortunately, direct 6D measurements are limited in resolution and dynamic range; here, we discuss the use of three slits and one screen to measure a 5D projection of the 6D phase space distribution, overcoming these limitations at the cost of one dimension. We examine the measured 5D distribution before and after transport through the BTF and compare to particle-in-cell simulations. We also discuss the possibility of reconstructing the 6D distribution from 5D and 4D projections.
 
slides icon Slides FRXD3 [4.078 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-FRXD3  
About • Received ※ 03 August 2022 — Revised ※ 09 August 2022 — Accepted ※ 12 August 2022 — Issue date ※ 02 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)