Keyword: cryomodule
Paper Title Other Keywords Page
MOYE5 In Situ Plasma Processing of Superconducting Cavities at JLab cavity, plasma, HOM, radiation 22
 
  • T. Powers, N.C. Brock, T.D. Ganey
    JLab, Newport News, Virginia, USA
 
  Jef­fer­son Lab has an on­go­ing R&D pro­gram in plasma pro­cess­ing which is close to going into pro­duc­tion pro­cess­ing in the CEBAF ac­cel­er­a­tor. Plasma pro­cess­ing is a com­mon tech­nique for re­mov­ing hy­dro­car­bons from sur­faces, which in­creases the work func­tion and re­duces the sec­ondary emis­sion co­ef­fi­cient. Un­like he­lium pro­cess­ing which re­lies on ion bom­bard­ment of the field emit­ters, plasma pro­cess­ing uses free oxy­gen pro­duced in the plasma to break down the hy­dro­car­bons on the sur­face of the cav­ity. The ini­tial focus of the ef­fort was pro­cess­ing C100 cav­i­ties by in­ject­ing RF power into the HOM cou­pler ports. Re­sults from pro­cess­ing cry­omod­ule in the cry­omod­ule test bunker as well as ver­ti­cal test re­sults will be pre­sented. We plan to start pro­cess­ing cry­omod­ules in the CEBAF tun­nel within the next year. The goal will be to im­prove the op­er­a­tional gra­di­ents and the en­ergy mar­gin of the linacs. This work will de­scribe the sys­tems and meth­ods used at JLAB for pro­cess­ing cav­i­ties using an argon oxy­gen gas mix­ture. Be­fore and after plasma pro­cess­ing re­sults will also be pre­sented.  
slides icon Slides MOYE5 [2.679 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOYE5  
About • Received ※ 01 August 2022 — Revised ※ 08 August 2022 — Accepted ※ 11 August 2022 — Issue date ※ 01 October 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPA12 Commissioning of HOM Detectors in the First Cryomodule of the LCLS-II Linac HOM, cavity, MMI, alignment 69
 
  • J.A. Diaz Cruz
    UNM-ECE, Albuquerque, USA
  • B.T. Jacobson, N.R. Neveu, J.P. Sikora
    SLAC, Menlo Park, California, USA
 
  Long-range wake­fields (LRWs) may cause emit­tance di­lu­tion ef­fects. LWRs are es­pe­cially un­wanted at fa­cil­i­ties with low emit­tance beams like the LCLS-II at SLAC. Dipo­lar higher-or­der modes (HOMs) are a set of LRWs that are ex­cited by off-axis beams. Two 4-chan­nel HOM de­tec­tors were built to mea­sure the beam-in­duced HOM sig­nals for TESLA-type su­per­con­duct­ing RF (SRF) cav­i­ties; they were tested at the Fer­mi­lab Ac­cel­er­a­tor Sci­ence and Tech­nol­ogy (FAST) fa­cil­ity and are now in­stalled at SLAC. The HOM de­tec­tors were de­signed to in­ves­ti­gate LRW ef­fects on the beam and to help with beam align­ment. This paper pre­sents pre­lim­i­nary re­sults of HOM mea­sure­ments at the first cry­omod­ule (CM01) of the LCLS-II linac and de­scribes the rel­e­vant hard­ware and setup of the ex­per­i­ment.  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA12  
About • Received ※ 09 August 2022 — Accepted ※ 20 August 2022 — Issue date ※ 31 August 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPA23 Tests of the Extended Range SRF Cavity Tuners for the LCLS-II HE Project cavity, operation, SRF, vacuum 100
 
  • C. Contreras-Martinez, T.T. Arkan, A.T. Cravatta, B.D. Hartsell, J.A. Kaluzny, T.N. Khabiboulline, Y.M. Pischalnikov, S. Posen, G.V. Romanov, J.C. Yun
    Fermilab, Batavia, Illinois, USA
 
  The LCLS-II HE su­per­con­duct­ing linac will pro­duce multi-en­ergy beams by sup­port­ing mul­ti­ple un­du­la­tor lines si­mul­ta­ne­ously. This could be achieved by using the cav­ity SRF tuner in the off-fre­quency de­tune mode. This off-fre­quency op­er­a­tion method was tested in the ver­i­fi­ca­tion cry­omod­ule (vCM) and CM 1 at Fer­mi­lab at 2 K. In both cases, the tuners achieved a fre­quency shift of -565±80 kHz. This study will dis­cuss cav­ity fre­quency dur­ing each step as it is being as­sem­bled in the cry­omod­ule string and fi­nally when it is being tested at 2 K. Track­ing the cav­ity fre­quency helped en­able the tuners to reach this large fre­quency shift. The spe­cific pro­ce­dures of tuner set­ting dur­ing as­sem­bly will be pre­sented.  
poster icon Poster MOPA23 [0.654 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA23  
About • Received ※ 03 August 2022 — Revised ※ 11 August 2022 — Accepted ※ 19 August 2022 — Issue date ※ 31 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPA24 LCLS-II and HE Cryomodule Microphonics at CMTF at Fermilab cavity, cryogenics, SRF, niobium 103
 
  • C. Contreras-Martinez, B.E. Chase, A.T. Cravatta, J.A. Einstein-Curtis, E.R. Harms, J.P. Holzbauer, J.N. Makara, S. Posen, R. Wang
    Fermilab, Batavia, Illinois, USA
  • L.R. Doolittle
    LBNL, Berkeley, California, USA
 
  Mi­cro­phon­ics causes the cav­ity to de­tune. This study dis­cusses the mi­cro­phon­ics of 16 cry­omod­ules, 14 for LCLS-II and 2 for LCLS-II HE tested at CMTF. The peak de­tun­ing, as well as the RMS de­tun­ing for each cry­omod­ule, will be dis­cussed. For each cry­omod­ule, the data was taken with enough soak­ing time to pre­vent any ther­mal­iza­tion ef­fects which can show up in the de­tun­ing. Each data cap­ture taken was 30 min­utes or longer and sam­pled at 1 kHz.  
poster icon Poster MOPA24 [1.428 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA24  
About • Received ※ 03 August 2022 — Revised ※ 10 August 2022 — Accepted ※ 11 August 2022 — Issue date ※ 20 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPA83 Automation of Superconducting Cavity and Superconducting Magnet Operation for FRIB cavity, operation, linac, solenoid 239
 
  • W. Chang, Y. Choi, X.-J. Du, W. Hartung, S.H. Kim, T. Konomi, S.R. Kunjir, H. Nguyen, J.T. Popielarski, K. Saito, T. Xu, S. Zhao
    FRIB, East Lansing, Michigan, USA
 
  The su­per­con­duct­ing (SC) dri­ver linac for the Fa­cil­ity for Rare Iso­tope Beams (FRIB) is a heavy-ion ac­cel­er­a­tor that ac­cel­er­ate ions to 200 MeV per nu­cleon. The linac has 46 cry­omod­ules that con­tain 324 SC cav­i­ties and 69 SC so­le­noid pack­ages. For linac op­er­a­tion with high avail­abil­ity and high re­li­a­bil­ity, au­toma­tion is es­sen­tial for such tasks as fast de­vice turn-on/off, fast re­cov­ery from trips, and real-time mon­i­tor­ing of op­er­a­tional per­for­mance. We have im­ple­mented sev­eral au­toma­tion al­go­rithms, in­clud­ing one-but­ton turn-on/off of SC cav­i­ties and SC mag­nets; au­to­mated de­gauss­ing of SC so­le­noids; mit­i­ga­tion of field emis­sion-in­duced mul­ti­pact­ing dur­ing re­cov­ery from cav­ity trips; and real-time mon­i­tor­ing of the cav­ity field level cal­i­bra­tion. The de­sign, de­vel­op­ment, and op­er­at­ing ex­pe­ri­ence with au­toma­tion will be pre­sented.  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA83  
About • Received ※ 02 August 2022 — Revised ※ 03 August 2022 — Accepted ※ 06 August 2022 — Issue date ※ 26 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPA84 Superconducting Cavity Commissioning for the FRIB Linac cavity, MMI, controls, linac 242
 
  • W. Chang, W. Hartung, S.H. Kim, T. Konomi, S.R. Kunjir, J.T. Popielarski, K. Saito, T. Xu, S. Zhao
    FRIB, East Lansing, Michigan, USA
 
  The su­per­con­duct­ing dri­ver linac for the Fa­cil­ity for Rare Iso­tope Beams (FRIB) is a heavy ion ac­cel­er­a­tor that has 46 cry­omod­ules with 324 su­per­con­duct­ing (SC) cav­i­ties that ac­cel­er­ate ions to 200 MeV per nu­cleon. Linac com­mis­sion­ing was done in mul­ti­ple phases, in par­al­lel with tech­ni­cal in­stal­la­tion. Ion beam have now been ac­cel­er­ated to the de­sign en­ergy through the full linac; rare iso­topes were first pro­duced in De­cem­ber 2021; and the first user ex­per­i­ment was com­pleted in May 2022. All cry­omod­ules were suc­cess­fully com­mis­sioned. Cry­omod­ule com­mis­sion­ing in­cluded es­tab­lish­ing the de­sired cav­ity fields, mea­sur­ing field emis­sion X-rays, op­ti­miz­ing the tuner con­trol loops, mea­sur­ing the cav­ity dy­namic heat load, and con­firm­ing the low-level RF con­trol (am­pli­tude and phase sta­bil­ity). Re­sults on cry­omod­ule com­mis­sion­ing and cry­omod­ule per­for­mance will be pre­sented.  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA84  
About • Received ※ 13 July 2022 — Revised ※ 02 August 2022 — Accepted ※ 13 August 2022 — Issue date ※ 05 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPA86 Conditioning of Low-Field Multipacting Barriers in Superconducting Quarter-Wave Resonators cavity, coupling, multipactoring, electron 249
 
  • S.H. Kim, W. Chang, W. Hartung, J.T. Popielarski, T. Xu
    FRIB, East Lansing, Michigan, USA
 
  Funding: This is based upon work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661, the State of Michigan and Michigan State University.
Mul­ti­pact­ing (MP) bar­ri­ers are typ­i­cally ob­served at very low RF am­pli­tude, at a field 2 to 3 or­ders of mag­ni­tude below the op­er­at­ing gra­di­ent, in low-fre­quency (<~100 MHz), quar­ter-wave res­onators (QWRs). Such bar­ri­ers may be trou­ble­some, as RF con­di­tion­ing with a fun­da­men­tal power cou­pler (FPC) of typ­i­cal cou­pling strength (ex­ter­nal Q = 106 to 107) is gen­er­ally dif­fi­cult. For the FRIB \beta = 0.085 QWRs (80.5 MHz), the low bar­rier is ob­served at an ac­cel­er­at­ing gra­di­ent (Eacc) of ~10 kV/m; the op­er­at­ing Eacc is 5.6 MV/m. The­o­ret­i­cal and sim­u­la­tion stud­ies sug­gested that the con­di­tion­ing is dif­fi­cult due to the rel­a­tively low RF power dis­si­pated into mul­ti­pact­ing rather than being a prob­lem of the low bar­rier being stronger than other bar­ri­ers. We de­vel­oped a sin­gle-stub coax­ial FPC match­ing el­e­ment for ex­ter­nal ad­just­ment of the ex­ter­nal Q by one order of mag­ni­tude. The match­ing el­e­ment pro­vided a sig­nif­i­cant re­duc­tion in the time to con­di­tion the low bar­rier. We will pre­sent the­o­ret­i­cal and sim­u­la­tion stud­ies of the low MP bar­rier and ex­per­i­men­tal re­sults on MP con­di­tion­ing with the sin­gle-stub FPC match­ing el­e­ment.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA86  
About • Received ※ 03 August 2022 — Revised ※ 09 August 2022 — Accepted ※ 11 August 2022 — Issue date ※ 21 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPA91 Plasma Processing of Superconducting Quarter-Wave Resonators Using a Higher-Order Mode plasma, cavity, SRF, HOM 267
 
  • W. Hartung, W. Chang, K. Elliott, S.H. Kim, T. Konomi, J.T. Popielarski, K. Saito, T. Xu
    FRIB, East Lansing, Michigan, USA
 
  The Fa­cil­ity for Rare Iso­tope Beams (FRIB) is a su­per­con­duct­ing ion linac with ac­cel­er­a­tion pro­vided by 104 quar­ter-wave res­onators (QWRs) and 220 half-wave res­onators (HWRs); FRIB user op­er­a­tions began in May 2022. Plasma clean­ing is being de­vel­oped as a method to mit­i­gate pos­si­ble fu­ture degra­da­tion of QWR or HWR per­for­mance: in-situ plasma clean­ing rep­re­sents an al­ter­na­tive to re­moval and dis­as­sem­bly of cry­omod­ules for re­fur­bish­ment of each cav­ity via re­peat etch­ing and rins­ing. Ini­tial mea­sure­ments were done on a QWR and an HWR with room-tem­per­a­ture-matched input cou­plers to drive the plasma via the fun­da­men­tal mode. Sub­se­quent plasma clean­ing tests were done on two ad­di­tional FRIB QWRs using the fun­da­men­tal power cou­pler (FPC) to drive the plasma. When using the FPC, a higher-or­der mode (HOM) at 5 times the ac­cel­er­at­ing mode fre­quency was used to drive the plasma. Use of the HOM al­lowed for less mis­match at the FPC and hence lower field in the cou­pler rel­a­tive to the cav­ity. A neon-oxy­gen gas mix­ture was used for plasma gen­er­a­tion. Be­fore and after cold tests showed a sig­nif­i­cant re­duc­tion in field emis­sion X-rays after plasma clean­ing. Re­sults will be pre­sented.  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA91  
About • Received ※ 12 August 2022 — Revised ※ 16 August 2022 — Accepted ※ 25 August 2022 — Issue date ※ 16 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEYE2 Upgrade of the FRIB ReAccelerator experiment, cavity, MMI, ion-source 572
 
  • A.C.C. Villari, B. Arend, G. Bollen, D.B. Crisp, K.D. Davidson, K. Fukushima, A.I. Henriques, K. Holland, S.H. Kim, A. Lapierre, Y. Liu, T. Maruta, D.G. Morris, S. Nash, P.N. Ostroumov, A.S. Plastun, J. Priller, S. Schwarz, B.M. Sherrill, M. Steiner, C. Sumithrarachchi, R. Walker, T. Zhang, Q. Zhao
    FRIB, East Lansing, Michigan, USA
 
  Funding: Work supported by the NSF under grant PHY15-65546 and DOE-SC under award number DE-SC0000661
The reac­cel­er­a­tor fa­cil­ity at FRIB was up­graded to pro­vide new sci­ence op­por­tu­ni­ties. The up­grade in­cluded a new ion source to pro­duce sta­ble and long livied rare iso­topes in a batch mode, a new room-tem­per­a­ture re­buncher, a new β = 0.085 quar­ter-wave-res­onator cry­omod­ule to in­crease the beam en­ergy from 3 MeV/u to 6 MeV/u for ions with a charge-to-mass ratio of 1/4, and a new ex­per­i­men­tal vault with beam­lines.
 
slides icon Slides WEYE2 [4.220 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-WEYE2  
About • Received ※ 13 July 2022 — Revised ※ 01 August 2022 — Accepted ※ 08 August 2022 — Issue date ※ 10 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPA03 Status of the SLAC/MSU SRF Gun Development Project cathode, gun, cavity, SRF 623
 
  • J.W. Lewellen, C. Adolphsen, R. Coy, L. Ge, F. Ji, M.J. Murphy, L. Xiao
    SLAC, Menlo Park, California, USA
  • A. Arnold, S. Gatzmaga, P. Murcek, R. Xiang
    HZDR, Dresden, Germany
  • Y. Choi, C. Compton, X.-J. Du, D.B. Greene, W. Hartung, S.H. Kim, T. Konomi, S.J. Miller, D.G. Morris, M.S. Patil, J.T. Popielarski, L. Popielarski, K. Saito, T. Xu
    FRIB, East Lansing, Michigan, USA
  • M.P. Kelly, T.B. Petersen
    ANL, Lemont, Illinois, USA
 
  Funding: US Department of Energy.
The LCLS-II-HE pro­ject at SLAC is in­tended to in­crease the pho­ton en­ergy reach of the LCLS-II FEL to at least 20 keV. In ad­di­tion to up­grad­ing the un­du­la­tor sys­tem, and in­creas­ing the elec­tron beam en­ergy to 8 GeV, the pro­ject will also con­struct a low-emit­tance in­jec­tor (LEI) in a new tun­nel. To achieve the LEI emit­tance goals, a low-MTE pho­to­cath­ode will be re­quired, as will on-cath­ode elec­tric fields up to 50% higher than those achiev­able in the cur­rent LCLS-II pho­toin­jec­tor. The beam source for the LEI will be based around a su­per­con­duct­ing quar­ter­wave cav­ity res­o­nant at 185.7 MHz. A pro­to­type gun is cur­rently being de­signed and fab­ri­cated at the Fa­cil­ity for Rare Iso­tope Beams (FRIB) at Michi­gan State Uni­ver­sity. This paper pre­sents the per­for­mance goals for the new gun de­sign, an overview of the pro­to­type de­vel­op­ment ef­fort, cur­rent sta­tus, and fu­ture plans in­clud­ing fab­ri­ca­tion of a "pro­duc­tion" gun for the LEI.
 
poster icon Poster WEPA03 [4.510 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-WEPA03  
About • Received ※ 21 July 2022 — Revised ※ 28 July 2022 — Accepted ※ 08 August 2022 — Issue date ※ 11 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPA12 Operational Experience of the New Booster Cryomodule at the Upgraded Injector Test Facility cavity, booster, simulation, experiment 640
 
  • M.W. Bruker, R. Bachimanchi, J.M. Grames, M.D. McCaughan, J. Musson, P.D. Owen, T.E. Plawski, M. Poelker, T. Powers, H. Wang, Y.W. Wang
    JLab, Newport News, Virginia, USA
 
  Funding: This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under contract DE-AC05-06OR23177.
Since the early 1990s, the in­jec­tor of the CEBAF ac­cel­er­a­tor at Jef­fer­son Lab has re­lied on a nor­mal-con­duct­ing RF graded-beta cap­ture sec­tion to boost the ki­netic en­ergy of the elec­tron beam from 100 / 130 keV to 600 keV for sub­se­quent ac­cel­er­a­tion using a cry­omod­ule hous­ing two su­per­con­duct­ing 5-cell cav­i­ties sim­i­lar to those used through­out the ac­cel­er­a­tor. To sim­plify the in­jec­tor de­sign and im­prove the beam qual­ity, the nor­mal-con­duct­ing RF cap­ture sec­tion and the cry­omod­ule will be re­placed with a new sin­gle booster cry­omod­ule em­ploy­ing a su­per­con­duct­ing, β = 0.6, 2-cell-cav­ity cap­ture sec­tion and a sin­gle, β = 0.97, 7-cell cav­ity. The Up­graded In­jec­tor Test Fa­cil­ity at Jef­fer­son Lab is cur­rently host­ing the new cry­omod­ule to eval­u­ate its per­for­mance with beam be­fore in­stal­la­tion at CEBAF. While demon­strat­ing sat­is­fac­tory per­for­mance of the booster and good agree­ment with sim­u­la­tions, our beam test re­sults also speak to lim­i­ta­tions of ac­cel­er­a­tor op­er­a­tions in a noisy, ther­mally un­reg­u­lated en­vi­ron­ment.
 
poster icon Poster WEPA12 [3.726 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-WEPA12  
About • Received ※ 03 August 2022 — Revised ※ 07 August 2022 — Accepted ※ 11 August 2022 — Issue date ※ 06 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPA19 HE Production Update at JLab - Introducing an Enhanced Nitrogen Purge for Clean String Assembly cavity, controls, vacuum, hardware 659
 
  • P.D. Owen
    JLab, Newport News, Virginia, USA
 
  A major lim­i­ta­tion to cry­omod­ule per­for­mance is field emis­sion caused by par­tic­u­lates within the su­per­con­duct­ing cav­i­ties. To re­duce con­t­a­m­i­na­tion of the inner sur­faces dur­ing as­sem­bly in a clean­room, the whole string can be con­nected to a purge sys­tem, which main­tains a con­stant over­pres­sure of dry, clean ni­tro­gen gas. Fol­low­ing suc­cesses of sim­i­lar sys­tems at XFEL and Fer­mi­lab, Jef­fer­son Lab fol­lowed this ex­am­ple for the pro­duc­tion of LCLS-II HE cry­omod­ules. Im­ple­ment­ing this sys­tem re­quired new pro­ce­dures, in­fra­struc­ture, and hard­ware, as well as sig­nif­i­cant test­ing of the sys­tem be­fore pro­duc­tion began. This paper will sum­ma­rize the im­ple­mented con­trols and pro­ce­dures, in­clud­ing lessons learned from Fer­mi­lab, as well as the re­sults of mock-up tests. Based on the lat­ter, the sys­tem was used to as­sem­ble the first ar­ti­cle string in April 2022, and was also used dur­ing a re­work re­quired due to is­sues with cold FPC ce­ram­ics two months later. The ben­e­fits of using a purge sys­tem with re­gards to pro­ce­dure, time sav­ings, and added flex­i­bil­ity for po­ten­tial re­work have al­ready proven to pro­vide a sig­nif­i­cant im­prove­ment for the pro­duc­tion of LCLS-II-HE cry­omod­ules at Jef­fer­son Lab.  
poster icon Poster WEPA19 [1.538 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-WEPA19  
About • Received ※ 02 August 2022 — Revised ※ 08 August 2022 — Accepted ※ 11 August 2022 — Issue date ※ 21 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPA29 Real-Time Cavity Fault Prediction in CEBAF Using Deep Learning cavity, network, SRF, experiment 687
 
  • M. Rahman, K.M. Iftekharuddin
    ODU, Norfolk, Virginia, USA
  • A. Carpenter, T.S. McGuckin, C. Tennant, L.S. Vidyaratne
    JLab, Newport News, Virginia, USA
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177.
Data-dri­ven pre­dic­tion of fu­ture faults is a major re­search area for many in­dus­trial ap­pli­ca­tions. In this work, we pre­sent a new pro­ce­dure of real-time fault pre­dic­tion for su­per­con­duct­ing ra­dio-fre­quency (SRF) cav­i­ties at the Con­tin­u­ous Elec­tron Beam Ac­cel­er­a­tor Fa­cil­ity (CEBAF) using deep learn­ing. CEBAF has been af­flicted by fre­quent down­time caused by SRF cav­ity faults. We per­form fault pre­dic­tion using pre-fault RF sig­nals from C100-type cry­omod­ules. Using the pre-fault sig­nal in­for­ma­tion, the new al­go­rithm pre­dicts the type of cav­ity fault be­fore the ac­tual onset. The early pre­dic­tion may en­able po­ten­tial mit­i­ga­tion strate­gies to pre­vent the fault. In our work, we apply a two-stage fault pre­dic­tion pipeline. In the first stage, a model dis­tin­guishes be­tween faulty and nor­mal sig­nals using a U-Net deep learn­ing ar­chi­tec­ture. In the sec­ond stage of the net­work, sig­nals flagged as faulty by the first model are clas­si­fied into one of seven fault types based on learned sig­na­tures in the data. Ini­tial re­sults show that our model can suc­cess­fully pre­dict most fault types 200 ms be­fore onset. We will dis­cuss rea­sons for poor model per­for­mance on spe­cific fault types.
 
poster icon Poster WEPA29 [1.339 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-WEPA29  
About • Received ※ 02 August 2022 — Revised ※ 07 August 2022 — Accepted ※ 11 August 2022 — Issue date ※ 17 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THZD6 An 8 GeV Linac as the Booster Replacement in the Fermilab Power Upgrade linac, injection, cavity, SRF 897
 
  • D.V. Neuffer, S.A. Belomestnykh, M. Checchin, D.E. Johnson, S. Posen, E. Pozdeyev, V.S. Pronskikh, A. Saini, N. Solyak, V.P. Yakovlev
    Fermilab, Batavia, Illinois, USA
 
  Funding: Work supported by the Fermi National Accelerator Laboratory, managed and operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy.
In­creas­ing the Main In­jec­tor (MI) beam power above ~1.2 MW re­quires re­place­ment of the 8-GeV Booster by a higher in­ten­sity al­ter­na­tive. In the Pro­ject X era, rapid-cy­cling syn­chro­tron (RCS) and linac so­lu­tions were con­sid­ered for this pur­pose. In this paper, we con­sider the linac ver­sion that pro­duces 8 GeV H beam for in­jec­tion into the Re­cy­cler Ring (RR) or Main In­jec­tor (MI). The linac takes ~1-GeV beam from the PIP-II Linac and ac­cel­er­ates it to ~2 GeV in a 650-MHz SRF linac, fol­lowed by a 8-GeV pulsed linac using 1300 MHz cry­omod­ules. The linac com­po­nents in­cor­po­rate re­cent im­prove­ments in SRF tech­nol­ogy. Re­search needed to im­ple­ment the high power SRF Linac is de­scribed.
 
slides icon Slides THZD6 [4.078 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-THZD6  
About • Received ※ 03 August 2022 — Revised ※ 11 August 2022 — Accepted ※ 12 August 2022 — Issue date ※ 04 October 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)