Author: Hao, Y.
Paper Title Page
MOPA82 Space Charge Driven Third Order Resonance at AGS Injection 236
 
  • M.A. Balcewicz, Y. Hao
    FRIB, East Lansing, Michigan, USA
  • Y. Hao, H. Huang, C. Liu, K. Zeno
    BNL, Upton, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy
Resonance line crossings at significant space charge tune shifts can exhibit various phenomena due to periodic resonance crossing from synchrotron motion* and manifests as halo generation and bunch shortening along with the more mundane emittance growth and beam loss. An injection experiment is conducted at the AGS using the fast wall current monitor and electron collecting Ionization Profile Monitor (eIPM) to probe third order resonances to better characterize the resonance crossing over a 4 ms time scale. This experiment shows some agreement with previous experiments, save for lack of bunch shortening, possibly due to relative resonance strength.
* G. Franchetti et al. PRSTAB 13, 114203. 2010
 
poster icon Poster MOPA82 [1.924 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA82  
About • Received ※ 02 August 2022 — Revised ※ 09 August 2022 — Accepted ※ 19 August 2022 — Issue date ※ 24 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPA69 The Impact on the Vertical Beam Dynamics Due to the Noise in a Horizontal Crab Crossing Scheme 788
 
  • Y. Hao
    BNL, Upton, New York, USA
  • Y. Luo
    Brookhaven National Laboratory (BNL), Electron-Ion Collider, Upton, New York, USA
 
  Funding: Work Supported BY Brookhaven Science Associates, LLC under contract NO. DE-SC0012704 with the U.S. Department of Energy.
Several recent and future colliders have adopted the crab crossing scheme to boost performance. The lower RF control noise of the crab cavities has been identified as one of the significant sources that impact the transverse beam quality in the crabbing plane. However, through beam-beam interaction and other coupling sources, the effect may also affect the non-crabbing plane. In this paper, we report the simulation observations of the beam dynamics in the non-crabbing plane in the presence of phase noise in the crab cavity.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-WEPA69  
About • Received ※ 03 August 2022 — Revised ※ 07 August 2022 — Accepted ※ 09 August 2022 — Issue date ※ 06 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPA80 Progress on Convergence Map Based on Square Matrix for Nonlinear Lattice Optimization 823
 
  • L.H. Yu, Y. Hao, Y. Hidaka, F. Plassard, V.V. Smaluk
    BNL, Upton, New York, USA
  • Y. Hao
    FRIB, East Lansing, Michigan, USA
 
  Funding: DOE.
We report progress on applying the square matrix method to obtain in high speed a "convergence map", which is similar but different from a frequency map. We give an example of applying the method to optimize a nonlinear lattice for the NSLS-II upgrade. The convergence map is obtained by solving the nonlinear dynamical equation by iteration of the perturbation method and studying the convergence. The map provides information about the stability border of the dynamical aperture. We compare the map with the frequency map from tracking. The result in our example of nonlinear optimization of the NSLS-II lattice shows the new method may be applied in nonlinear lattice optimization, taking advantage of the high speed (about 30~300 times faster) to explore x, y, and the off-momentum phase space.
 
poster icon Poster WEPA80 [5.392 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-WEPA80  
About • Received ※ 19 July 2022 — Revised ※ 26 July 2022 — Accepted ※ 08 August 2022 — Issue date ※ 10 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOYD4 Model Parameters Determination in EIC Strong-Strong Simulation 9
 
  • D. Xu, C. Montag
    BNL, Upton, New York, USA
  • Y. Hao
    FRIB, East Lansing, Michigan, USA
  • Y. Luo
    Brookhaven National Laboratory (BNL), Electron-Ion Collider, Upton, New York, USA
  • J. Qiang
    LBNL, Berkeley, California, USA
 
  The ion beam is sensitive to numerical noise in the strong-strong simulation of the Electron-Ion Collider (EIC). This paper discusses the impact of model parameters — macro particles, transverse grids and longitudinal slices — on beam size evolution in PIC based strong-strong simulation. It will help us to understand the emittance growth in strong-strong simulation.  
slides icon Slides MOYD4 [0.849 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOYD4  
About • Received ※ 02 August 2022 — Revised ※ 03 August 2022 — Accepted ※ 10 August 2022 — Issue date ※ 11 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOYD5 Tolerances of Crab Dispersion at the Interaction Point in the Hadron Storage Ring of the Electron-Ion Collider 12
 
  • Y. Luo, J.S. Berg, M. Blaskiewicz, C. Montag, V. Ptitsyn, F.J. Willeke, D. Xu
    BNL, Upton, New York, USA
  • Y. Hao
    FRIB, East Lansing, Michigan, USA
  • V.S. Morozov
    ORNL RAD, Oak Ridge, Tennessee, USA
  • J. Qiang
    LBNL, Berkeley, California, USA
  • T. Satogata
    JLab, Newport News, Virginia, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy.
The Electron Ion Collider (EIC) presently under construction at Brookhaven National Laboratory will collide polarized high energy electron beams with hadron beams with luminosity up to 1034 cm-2 s-1 in the center mass energy range of 20 to 140 GeV. Due to the detector solenoid in the interaction region, the design horizontal crabbing angle will be coupled to the vertical plane if uncompensated. In this article, we estimate the tolerance of crab dispersion at the interaction point in the EIC Hadron Storage Ring (HSR). Both strong-strong and weak-strong simulations are used. We found that there is a tight tolerance of vertical crabbing angle at the interaction point in the HSR.
 
slides icon Slides MOYD5 [1.183 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOYD5  
About • Received ※ 01 August 2022 — Accepted ※ 04 August 2022 — Issue date ※ 15 August 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPA81 Study of Nonlinear Dynamics in the 4-D Hénon Map Using the Square Matrix Method and Iterative Methods 232
 
  • K.J. Anderson, Y. Hao
    FRIB, East Lansing, Michigan, USA
  • L.H. Yu
    BNL, Upton, New York, USA
 
  Funding: Accelerator Stewardship program under award number DE-SC0019403 US Department of Energy, Office of Science, High Energy Physics under award number DE-SC0018362 and Michigan State University
The Hénon Map represents a linear lattice with a single sextupole kick. This map has been extensively studied due to its chaotic behavior. The case for the two dimensional phase space has recently been revisited using ideas from KAM theory to create an iterative process that transforms nonlinear perturbed trajectories into rigid rotations*. The convergence of this method relates to the resonance structure and can be used as an indicator of the dynamic aperture. The studies of this method have been extended to the four dimensional phase space case which introduces coupling between the transverse coordinates.
*Hao, Y., Anderson, K., & Yu, L. H. (2021, August). Revisit of Nonlinear Dynamics in Hénon Map Using Square Matrix Method. https://doi.org/10.18429/JACoW-IPAC2021-THPAB016
 
poster icon Poster MOPA81 [3.103 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA81  
About • Received ※ 19 July 2022 — Revised ※ 04 August 2022 — Accepted ※ 15 August 2022 — Issue date ※ 26 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPA89 RHIC Electron Beam Cooling Analysis Using Principle Component and Autoencoder Analysis 260
 
  • A.D. Tran, Y. Hao
    FRIB, East Lansing, Michigan, USA
  • X. Gu
    BNL, Upton, New York, USA
 
  Funding: Work supported by the US Department of Energy under contract No. DE-AC02-98CH10886.
Principal component analysis and autoencoder analysis were used to analyze the experimental data of RHIC operation with low energy RHIC electron cooling (LEReC). This is unsupervised learning which includes electron beam settings and observable during operation. Both analyses were used to gauge the dimensional reducibility of the data and to understand which features are important to beam cooling.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA89  
About • Received ※ 02 August 2022 — Revised ※ 05 August 2022 — Accepted ※ 06 August 2022 — Issue date ※ 12 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPA90 Relating Initial Distribution to Beam Loss on the Front End of a Heavy-Ion Linac Using Machine Learning 263
 
  • A.D. Tran, Y. Hao
    FRIB, East Lansing, Michigan, USA
  • J.L. Martinez Marin, B. Mustapha
    ANL, Lemont, Illinois, USA
 
  Funding: This work was supported by a sub-reward from Argonne National Laboratory and supported by the U.S. Department of Energy, under Contract No. DE-AC02-06CH11357.
This work demonstrates using a Neural Network and a Gaussian Process to model the ATLAS front-end. Various neural network architectures were created and trained on the machine settings and outputs to model the phase space projections. The model was then trained on a dataset, with non-linear distortion, to gauge the transferability of the model from simulation to machine.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA90  
About • Received ※ 02 August 2022 — Revised ※ 05 August 2022 — Accepted ※ 06 August 2022 — Issue date ※ 11 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPA75 {6-D} Element-by-Element Particle Tracking with Crab Cavity Phase Noise and Weak-Strong Beam-Beam Interaction for the Hadron Storage Ring of the Electron-Ion Collider 809
 
  • Y. Luo, J.S. Berg, M. Blaskiewicz, C. Montag, V. Ptitsyn, F.J. Willeke, D. Xu
    BNL, Upton, New York, USA
  • Y. Hao
    FRIB, East Lansing, Michigan, USA
  • H. Huang
    ODU, Norfolk, Virginia, USA
  • V.S. Morozov
    ORNL RAD, Oak Ridge, Tennessee, USA
  • J. Qiang
    LBNL, Berkeley, California, USA
  • T. Satogata
    JLab, Newport News, Virginia, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy.
The Electron Ion Collider (EIC) presently under construction at Brookhaven National Laboratory will collide polarized high energy electron beams with hadron beams with luminosity up to 1034 cm-2 s-1 in the center mass energy range of 20 to 140 GeV. Crab cavities are used to compensate the geometric luminosity due to a large crossing angle in the EIC. However, it was found that the phase noise in crab cavities will generate a significant emittance growth for hadron beams and its tolerance from analytical calculation is very small for the Hadron Storage Ring (HSR) of the EIC. In this paper, we report on 6-D symplectic particle tracking to estimate the proton emittance growth rate, especially in the vertical plane, for the HSR with weak-strong beam-beam and other machine or lattice errors.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-WEPA75  
About • Received ※ 01 August 2022 — Revised ※ 06 August 2022 — Accepted ※ 09 August 2022 — Issue date ※ 19 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPA83 Extended Soft-Gaussian Code for Beam-Beam Simulations 830
 
  • D. Xu, C. Montag
    BNL, Upton, New York, USA
  • Y. Hao
    FRIB, East Lansing, Michigan, USA
  • Y. Luo
    Brookhaven National Laboratory (BNL), Electron-Ion Collider, Upton, New York, USA
  • J. Qiang
    LBNL, Berkeley, California, USA
 
  Large ion beam emittance growth is observed in strong-strong beam-beam simulations for the Electron-Ion Collider (EIC). As we know, the Particle-In-Cell (PIC) solver is subject to numerical noises. As an alternative approach, an extended soft-Gaussian code is developed with help of Hermite polynomials in this paper. The correlation between the horizontal and the vertical coordinates of macro-particles is considered. The 3rd order center moments are also included in the beam-beam force. This code could be used as a cross check tool of PIC based strong-strong simulation.  
poster icon Poster WEPA83 [0.440 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-WEPA83  
About • Received ※ 02 August 2022 — Revised ※ 05 August 2022 — Accepted ※ 08 August 2022 — Issue date ※ 24 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)