Author: Hao, Y.
Paper Title Page
MOPA82 Space Charge Driven Third Order Resonance at AGS Injection 236
 
  • M.A. Balcewicz, Y. Hao
    FRIB, East Lansing, Michigan, USA
  • Y. Hao, H. Huang, C. Liu, K. Zeno
    BNL, Upton, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy
Res­o­nance line cross­ings at sig­nif­i­cant space charge tune shifts can ex­hibit var­i­ous phe­nom­ena due to pe­ri­odic res­o­nance cross­ing from syn­chro­tron mo­tion* and man­i­fests as halo gen­er­a­tion and bunch short­en­ing along with the more mun­dane emit­tance growth and beam loss. An in­jec­tion ex­per­i­ment is con­ducted at the AGS using the fast wall cur­rent mon­i­tor and elec­tron col­lect­ing Ion­iza­tion Pro­file Mon­i­tor (eIPM) to probe third order res­o­nances to bet­ter char­ac­ter­ize the res­o­nance cross­ing over a 4 ms time scale. This ex­per­i­ment shows some agree­ment with pre­vi­ous ex­per­i­ments, save for lack of bunch short­en­ing, pos­si­bly due to rel­a­tive res­o­nance strength.
* G. Franchetti et al. PRSTAB 13, 114203. 2010
 
poster icon Poster MOPA82 [1.924 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA82  
About • Received ※ 02 August 2022 — Revised ※ 09 August 2022 — Accepted ※ 19 August 2022 — Issue date ※ 24 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPA69 The Impact on the Vertical Beam Dynamics Due to the Noise in a Horizontal Crab Crossing Scheme 788
 
  • Y. Hao
    BNL, Upton, New York, USA
  • Y. Luo
    Brookhaven National Laboratory (BNL), Electron-Ion Collider, Upton, New York, USA
 
  Funding: Work Supported BY Brookhaven Science Associates, LLC under contract NO. DE-SC0012704 with the U.S. Department of Energy.
Sev­eral re­cent and fu­ture col­lid­ers have adopted the crab cross­ing scheme to boost per­for­mance. The lower RF con­trol noise of the crab cav­i­ties has been iden­ti­fied as one of the sig­nif­i­cant sources that im­pact the trans­verse beam qual­ity in the crab­bing plane. How­ever, through beam-beam in­ter­ac­tion and other cou­pling sources, the ef­fect may also af­fect the non-crab­bing plane. In this paper, we re­port the sim­u­la­tion ob­ser­va­tions of the beam dy­nam­ics in the non-crab­bing plane in the pres­ence of phase noise in the crab cav­ity.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-WEPA69  
About • Received ※ 03 August 2022 — Revised ※ 07 August 2022 — Accepted ※ 09 August 2022 — Issue date ※ 06 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPA80 Progress on Convergence Map Based on Square Matrix for Nonlinear Lattice Optimization 823
 
  • L.H. Yu, Y. Hao, Y. Hidaka, F. Plassard, V.V. Smaluk
    BNL, Upton, New York, USA
  • Y. Hao
    FRIB, East Lansing, Michigan, USA
 
  Funding: DOE.
We re­port progress on ap­ply­ing the square ma­trix method to ob­tain in high speed a "con­ver­gence map", which is sim­i­lar but dif­fer­ent from a fre­quency map. We give an ex­am­ple of ap­ply­ing the method to op­ti­mize a non­lin­ear lat­tice for the NSLS-II up­grade. The con­ver­gence map is ob­tained by solv­ing the non­lin­ear dy­nam­i­cal equa­tion by it­er­a­tion of the per­tur­ba­tion method and study­ing the con­ver­gence. The map pro­vides in­for­ma­tion about the sta­bil­ity bor­der of the dy­nam­i­cal aper­ture. We com­pare the map with the fre­quency map from track­ing. The re­sult in our ex­am­ple of non­lin­ear op­ti­miza­tion of the NSLS-II lat­tice shows the new method may be ap­plied in non­lin­ear lat­tice op­ti­miza­tion, tak­ing ad­van­tage of the high speed (about 30~300 times faster) to ex­plore x, y, and the off-mo­men­tum phase space.
 
poster icon Poster WEPA80 [5.392 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-WEPA80  
About • Received ※ 19 July 2022 — Revised ※ 26 July 2022 — Accepted ※ 08 August 2022 — Issue date ※ 10 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOYD4 Model Parameters Determination in EIC Strong-Strong Simulation 9
 
  • D. Xu, C. Montag
    BNL, Upton, New York, USA
  • Y. Hao
    FRIB, East Lansing, Michigan, USA
  • Y. Luo
    Brookhaven National Laboratory (BNL), Electron-Ion Collider, Upton, New York, USA
  • J. Qiang
    LBNL, Berkeley, California, USA
 
  The ion beam is sen­si­tive to nu­mer­i­cal noise in the strong-strong sim­u­la­tion of the Elec­tron-Ion Col­lider (EIC). This paper dis­cusses the im­pact of model pa­ra­me­ters — macro par­ti­cles, trans­verse grids and lon­gi­tu­di­nal slices — on beam size evo­lu­tion in PIC based strong-strong sim­u­la­tion. It will help us to un­der­stand the emit­tance growth in strong-strong sim­u­la­tion.  
slides icon Slides MOYD4 [0.849 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOYD4  
About • Received ※ 02 August 2022 — Revised ※ 03 August 2022 — Accepted ※ 10 August 2022 — Issue date ※ 11 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOYD5 Tolerances of Crab Dispersion at the Interaction Point in the Hadron Storage Ring of the Electron-Ion Collider 12
 
  • Y. Luo, J.S. Berg, M. Blaskiewicz, C. Montag, V. Ptitsyn, F.J. Willeke, D. Xu
    BNL, Upton, New York, USA
  • Y. Hao
    FRIB, East Lansing, Michigan, USA
  • V.S. Morozov
    ORNL RAD, Oak Ridge, Tennessee, USA
  • J. Qiang
    LBNL, Berkeley, California, USA
  • T. Satogata
    JLab, Newport News, Virginia, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy.
The Elec­tron Ion Col­lider (EIC) presently under con­struc­tion at Brookhaven Na­tional Lab­o­ra­tory will col­lide po­lar­ized high en­ergy elec­tron beams with hadron beams with lu­mi­nos­ity up to 1034 cm-2 s-1 in the cen­ter mass en­ergy range of 20 to 140 GeV. Due to the de­tec­tor so­le­noid in the in­ter­ac­tion re­gion, the de­sign hor­i­zon­tal crab­bing angle will be cou­pled to the ver­ti­cal plane if un­com­pen­sated. In this ar­ti­cle, we es­ti­mate the tol­er­ance of crab dis­per­sion at the in­ter­ac­tion point in the EIC Hadron Stor­age Ring (HSR). Both strong-strong and weak-strong sim­u­la­tions are used. We found that there is a tight tol­er­ance of ver­ti­cal crab­bing angle at the in­ter­ac­tion point in the HSR.
 
slides icon Slides MOYD5 [1.183 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOYD5  
About • Received ※ 01 August 2022 — Accepted ※ 04 August 2022 — Issue date ※ 15 August 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPA81 Study of Nonlinear Dynamics in the 4-D Hénon Map Using the Square Matrix Method and Iterative Methods 232
 
  • K.J. Anderson, Y. Hao
    FRIB, East Lansing, Michigan, USA
  • L.H. Yu
    BNL, Upton, New York, USA
 
  Funding: Accelerator Stewardship program under award number DE-SC0019403 US Department of Energy, Office of Science, High Energy Physics under award number DE-SC0018362 and Michigan State University
The Hénon Map rep­re­sents a lin­ear lat­tice with a sin­gle sex­tu­pole kick. This map has been ex­ten­sively stud­ied due to its chaotic be­hav­ior. The case for the two di­men­sional phase space has re­cently been re­vis­ited using ideas from KAM the­ory to cre­ate an it­er­a­tive process that trans­forms non­lin­ear per­turbed tra­jec­to­ries into rigid ro­ta­tions*. The con­ver­gence of this method re­lates to the res­o­nance struc­ture and can be used as an in­di­ca­tor of the dy­namic aper­ture. The stud­ies of this method have been ex­tended to the four di­men­sional phase space case which in­tro­duces cou­pling be­tween the trans­verse co­or­di­nates.
*Hao, Y., Anderson, K., & Yu, L. H. (2021, August). Revisit of Nonlinear Dynamics in Hénon Map Using Square Matrix Method. https://doi.org/10.18429/JACoW-IPAC2021-THPAB016
 
poster icon Poster MOPA81 [3.103 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA81  
About • Received ※ 19 July 2022 — Revised ※ 04 August 2022 — Accepted ※ 15 August 2022 — Issue date ※ 26 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPA89 RHIC Electron Beam Cooling Analysis Using Principle Component and Autoencoder Analysis 260
 
  • A.D. Tran, Y. Hao
    FRIB, East Lansing, Michigan, USA
  • X. Gu
    BNL, Upton, New York, USA
 
  Funding: Work supported by the US Department of Energy under contract No. DE-AC02-98CH10886.
Prin­ci­pal com­po­nent analy­sis and au­toen­coder analy­sis were used to an­a­lyze the ex­per­i­men­tal data of RHIC op­er­a­tion with low en­ergy RHIC elec­tron cool­ing (LEReC). This is un­su­per­vised learn­ing which in­cludes elec­tron beam set­tings and ob­serv­able dur­ing op­er­a­tion. Both analy­ses were used to gauge the di­men­sional re­ducibil­ity of the data and to un­der­stand which fea­tures are im­por­tant to beam cool­ing.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA89  
About • Received ※ 02 August 2022 — Revised ※ 05 August 2022 — Accepted ※ 06 August 2022 — Issue date ※ 12 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPA90 Relating Initial Distribution to Beam Loss on the Front End of a Heavy-Ion Linac Using Machine Learning 263
 
  • A.D. Tran, Y. Hao
    FRIB, East Lansing, Michigan, USA
  • J.L. Martinez Marin, B. Mustapha
    ANL, Lemont, Illinois, USA
 
  Funding: This work was supported by a sub-reward from Argonne National Laboratory and supported by the U.S. Department of Energy, under Contract No. DE-AC02-06CH11357.
This work demon­strates using a Neural Net­work and a Gauss­ian Process to model the ATLAS front-end. Var­i­ous neural net­work ar­chi­tec­tures were cre­ated and trained on the ma­chine set­tings and out­puts to model the phase space pro­jec­tions. The model was then trained on a dataset, with non-lin­ear dis­tor­tion, to gauge the trans­fer­abil­ity of the model from sim­u­la­tion to ma­chine.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA90  
About • Received ※ 02 August 2022 — Revised ※ 05 August 2022 — Accepted ※ 06 August 2022 — Issue date ※ 11 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPA75 {6-D} Element-by-Element Particle Tracking with Crab Cavity Phase Noise and Weak-Strong Beam-Beam Interaction for the Hadron Storage Ring of the Electron-Ion Collider 809
 
  • Y. Luo, J.S. Berg, M. Blaskiewicz, C. Montag, V. Ptitsyn, F.J. Willeke, D. Xu
    BNL, Upton, New York, USA
  • Y. Hao
    FRIB, East Lansing, Michigan, USA
  • H. Huang
    ODU, Norfolk, Virginia, USA
  • V.S. Morozov
    ORNL RAD, Oak Ridge, Tennessee, USA
  • J. Qiang
    LBNL, Berkeley, California, USA
  • T. Satogata
    JLab, Newport News, Virginia, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy.
The Elec­tron Ion Col­lider (EIC) presently under con­struc­tion at Brookhaven Na­tional Lab­o­ra­tory will col­lide po­lar­ized high en­ergy elec­tron beams with hadron beams with lu­mi­nos­ity up to 1034 cm-2 s-1 in the cen­ter mass en­ergy range of 20 to 140 GeV. Crab cav­i­ties are used to com­pen­sate the geo­met­ric lu­mi­nos­ity due to a large cross­ing angle in the EIC. How­ever, it was found that the phase noise in crab cav­i­ties will gen­er­ate a sig­nif­i­cant emit­tance growth for hadron beams and its tol­er­ance from an­a­lyt­i­cal cal­cu­la­tion is very small for the Hadron Stor­age Ring (HSR) of the EIC. In this paper, we re­port on 6-D sym­plec­tic par­ti­cle track­ing to es­ti­mate the pro­ton emit­tance growth rate, es­pe­cially in the ver­ti­cal plane, for the HSR with weak-strong beam-beam and other ma­chine or lat­tice er­rors.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-WEPA75  
About • Received ※ 01 August 2022 — Revised ※ 06 August 2022 — Accepted ※ 09 August 2022 — Issue date ※ 19 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPA83 Extended Soft-Gaussian Code for Beam-Beam Simulations 830
 
  • D. Xu, C. Montag
    BNL, Upton, New York, USA
  • Y. Hao
    FRIB, East Lansing, Michigan, USA
  • Y. Luo
    Brookhaven National Laboratory (BNL), Electron-Ion Collider, Upton, New York, USA
  • J. Qiang
    LBNL, Berkeley, California, USA
 
  Large ion beam emit­tance growth is ob­served in strong-strong beam-beam sim­u­la­tions for the Elec­tron-Ion Col­lider (EIC). As we know, the Par­ti­cle-In-Cell (PIC) solver is sub­ject to nu­mer­i­cal noises. As an al­ter­na­tive ap­proach, an ex­tended soft-Gauss­ian code is de­vel­oped with help of Her­mite poly­no­mi­als in this paper. The cor­re­la­tion be­tween the hor­i­zon­tal and the ver­ti­cal co­or­di­nates of macro-par­ti­cles is con­sid­ered. The 3rd order cen­ter mo­ments are also in­cluded in the beam-beam force. This code could be used as a cross check tool of PIC based strong-strong sim­u­la­tion.  
poster icon Poster WEPA83 [0.440 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-WEPA83  
About • Received ※ 02 August 2022 — Revised ※ 05 August 2022 — Accepted ※ 08 August 2022 — Issue date ※ 24 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)