Keyword: detector
Paper Title Other Keywords Page
MOYE4 Diagnoses and Repair of a Crack in the Drift Tube LINAC Accelerating Structure at LANSCE vacuum, experiment, linac, drift-tube-linac 19
 
  • W.C. Barkley, D.A. Bingham, M.J. Borden, J.A. Burkhart, D.J. Evans, J.T.M. Lyles, J.P. Montross, J.F. O’Hara, B.J. Roller, M. Sanchez Barrueta
    LANL, Los Alamos, New Mexico, USA
 
  Funding: Work supported by the United States Department of Energy, National Nuclear Security Agency, under contract DE-AC52-06NA25396
Many were perplexed at the inability of Module 3 at LANSCE to operate at peak power and duty factor while running production beam. During the 2018 production run, the DTL began to intermittently break down, leading to a series of root cause investigations. These analyses included eliminating the usual suspects: vacuum leak, debris in tank, driveline window, power coupler, etc. The throttling back of repetition rate from 120 to 60 Hz allowed continued production with a diminished beam, one that reduced neutron flux to three experimental areas. During the annual shutdown in 2019, a more thorough investigation involving the use of x-ray detection, high-resolution cameras and IR detection through site glass windows was performed. After a tenacious search, a 30 cm long crack was discovered in a weld at one of the ion pump port grates. Inaccessibility for welding from the outside and in a confined space, non-intrusive repairs were tried first but were unsuccessful. Ultimately, an expert welder entered the tank to weld the crack under unfamiliar welding conditions. This paper describes the diagnoses, non-intrusive solutions and ultimate repair of the crack in the accelerating structure.
 
slides icon Slides MOYE4 [3.232 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOYE4  
About • Received ※ 23 July 2022 — Revised ※ 04 August 2022 — Accepted ※ 05 August 2022 — Issue date ※ 13 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPA13 Design of a Surrogate Model for MUED at BNL Using VSim, Elegant and HPC simulation, gun, electron, laser 72
 
  • S.I. Sosa Guitron, S. Biedron, T.B. Bolin
    UNM-ECE, Albuquerque, USA
  • S. Biedron
    Element Aero, Chicago, USA
  • S. Biedron
    UNM-ME, Albuquerque, New Mexico, USA
 
  Funding: U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Program of Electron and Scanning Probe Microscopes, award number DE-SC0021365.
The MeV Ultrafast Electron Diffraction (MUED) instrument at Brookhaven National Laboratory is a unique capability for material science. As part of a plan to make MUED a high-throughput user facility, we are exploring instrumentation developments based on Machine Learning (ML). We are developing a surrogate model of MUED that can be used to support control tasks. The surrogate model will be based on beam simulations that are benchmarked to experimental observations. We use VSim to model the beam dynamics of the radio-frequency gun and Elegant to transport the beam through the rest of the beam-line. We also use High Performance Computing resources from Argonne Leadership Computing Facility to generate the data for the surrogate model based on the original simulation as well as training the ML model.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA13  
About • Received ※ 01 August 2022 — Revised ※ 09 August 2022 — Accepted ※ 11 August 2022 — Issue date ※ 21 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPA18 Residual Dose and Environmental Monitoring for the Fermilab Main Injector Tunnel Using the Data Acquisition Logging Engine (Dale) survey, radiation, proton, operation 87
 
  • N. Chelidze, R. Ainsworth, B.C. Brown, D. Capista, K.J. Hazelwood, D.K. Morris, M.J. Murphy
    Fermilab, Batavia, Illinois, USA
 
  Funding: Fermi National Accelerator Laboratory
The Recycler and the Main Injector are part of the Fermilab Accelerator complex used to deliver proton beam to the different experiments. It is very important to control and minimize losses in both machines during operation, to reduce personnel dose from residual activation and to preserve component lifetime. To minimize losses, we need to identify the loss points and adjust the components accordingly. The Data Acquisition Loss Engine (DALE) platform has been developed within the Main Injector department and upgraded throughout the years. DALE is used to survey the entire enclosure for residual dose rates and environmental readings when unrestricted access to the enclosure is possible. Currently DALE has two radiation meters, which are aligned along each machine, so loss points can be identified for both at the same time. DALE attaches to the enclosure carts and is continuously in motion monitoring dose rates and other environmental readings. In this paper we will describe how DALE is used to provide radiation maps of the residual dose rates in the enclosure. We will also compare the loss points with the Beam Loss monitor data.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA18  
About • Received ※ 02 August 2022 — Revised ※ 05 August 2022 — Accepted ※ 11 August 2022 — Issue date ※ 21 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPA43 Dee Voltage Regulator for the 88-Inch Cyclotron cyclotron, feedback, controls, power-supply 147
 
  • M. Kireeff, P. Bloemhard, T. Hassan, L. Phair
    LBNL, Berkeley, California, USA
 
  Funding: This work was supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under Contract No. DE-AC02-05CH11231
A new broadband Dee voltage regulator was designed and built for the 88-Inch Cyclotron at Lawrence Berkeley National Laboratory. The previous regulator was obsolete, consequently, it was difficult to troubleshoot and repair. Additionally, during operation, it displayed problems of distortion and stability at certain frequencies. The new regulator uses off-the-shelf components that can detect and disable the RF during sparking events, protecting the RF driver system. Furthermore, it improves the tuning of the cyclotron and allows consistency in operation.
 
poster icon Poster MOPA43 [1.032 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA43  
About • Received ※ 02 August 2022 — Revised ※ 04 August 2022 — Accepted ※ 16 August 2022 — Issue date ※ 09 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPA80 Design Study for Non-Intercepting Gas-Sheet Profile Monitor at FRIB photon, heavy-ion, electron, simulation 229
 
  • A. Lokey, S.M. Lidia
    FRIB, East Lansing, Michigan, USA
 
  Funding: Work supported by the US Department of Energy, Office of Science, High Energy Physics under Cooperative Agreement award number DE-SC0018362 and Michigan State University.
Non-invasive profile monitors offer a significant advantage for continuous, online monitoring of transverse beam profile and tuning of beam parameters during operation. This is due to both the non-destructive nature of the measurement and the unique feature that some monitors have of being able to determine both transverse profiles in one measurement [1]. One method of interest for making this measurement is the use of a thin gas curtain, which intercepts the beam and generates both ions and photons, which can be collected at a detector situated perpendicular to the gas sheet. This study will investigate the requirements for developing such a measurement device for use at the Facility for Rare Isotope Beams (FRIB), which produces high-intensity, multi charge state, heavy ion beams. Included will be an initial design specifications and an analysis of alternatives between ionization and beam-induced fluorescence measurement techniques for acquiring signal from the gas sheet.
[1] I. Yamada, M. Wada, K. Moriya, et al, "High-intensity beam profile measurement using a gas sheet monitor by beam induced fluorescence detection," Phys. Rev. Accel. Beams 24, 042801, 2021.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA80  
About • Received ※ 03 August 2022 — Revised ※ 06 August 2022 — Accepted ※ 06 September 2022 — Issue date ※ 07 October 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPA22 Measurements of Bunch Length in the Advanced Photon Source Booster Synchrotron booster, synchrotron, background, photon 394
 
  • J.C. Dooling, W. Berg, J.R. Calvey, K.C. Harkay, K.P. Wootton
    ANL, Lemont, Illinois, USA
 
  Funding: Work supported by the U.S. D.O.E.,Office of Science, Office of Basic Energy Sciences, under contract number DE-AC02- 06CH11357.
A bunch duration monitor (BDM) was installed at the end of a synchrotron light monitor (SLM) port in the Advanced Photon Source (APS) booster synchrotron. The BDM is based on a fast Hamamatsu metal-semiconductor-metal detector with nominal rise and fall times of 30 ps. Bunch length data is especially important as the bunch charge will be raised from 3 nC, used in the existing machine, to as much as 18 nC for APS-Upgrade operation. During preliminary high-charge studies, the SLM image is observed to move over a period of minutes while the BDM signal intensity varies; the motion is likely due to thermal loading of the in-tunnel synchrotron light mirror. Work is underway to stabilize the position using a simple feedback system and motorized mirror mount, as well as a new synchrotron light mirror assembly with improved thermal load handling. The feedback system will maintain optical alignment on the BDM at an optimum position based on the SLM centroid location. The optical layout and feedback system will be presented along with preliminary bunch length data.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-TUPA22  
About • Received ※ 04 August 2022 — Revised ※ 09 August 2022 — Accepted ※ 10 August 2022 — Issue date ※ 09 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPA28 Update on the Development of a Low-Cost Button BPM Signal Detector at AWA pick-up, simulation, electron, electronics 409
 
  • W. Liu, G. Chen, D.S. Doran, S.Y. Kim, X. Lu, P. Piot, J.G. Power, C. Whiteford, E.E. Wisniewski
    ANL, Lemont, Illinois, USA
  • E.E. Wisniewski
    IIT, Chicago, Illinois, USA
 
  Funding: Work supported by the US Department of Energy, Office of Science.
A single-pulse, high dynamic range, cost-effective BPM signal detector has been on the most wanted list of the Argonne Wakefield Accelerator (AWA) Test Facility for many years. The unique capabilities of the AWA beamline require BPM instrumentation with an unprecedented dynamic range, thus a cost-effective solution could be challenging to design and prototype. With the help of a better circuit model for a button BPM signal source, we are able to do the circuit simulations with more realistic input signals and make predictions much closer to realities. Our most recent design and prototype results are shared in this paper.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-TUPA28  
About • Received ※ 01 August 2022 — Revised ※ 08 August 2022 — Accepted ※ 11 August 2022 — Issue date ※ 09 October 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPA37 A Distributed Beam Loss Monitor Based upon Activation of Oxygen in Deionised Cooling Water storage-ring, radiation, photon, experiment 433
 
  • K.P. Wootton
    ANL, Lemont, Illinois, USA
 
  Funding: This research used resources of the Advanced Photon Source, operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357.
We propose a novel beam loss detection scheme whereby activation of deionised cooling water is used to observe elevated radiation around the APS storage ring. This is based on radioactivation of oxygen within deionised cooling water by gamma rays above 10 MeV and neutrons above 15 MeV. Losses would be detected using a gamma ray detector monitoring process water flow out of the accelerator enclosure. We anticipate that this could be used to provide a segmented, distributed loss monitor system covering the accelerator components closest to locations where radiation is generated.
 
poster icon Poster TUPA37 [0.528 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-TUPA37  
About • Received ※ 02 August 2022 — Accepted ※ 09 August 2022 — Issue date ※ 26 September 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPA43 Novel RF Phase Detector for Accelerator Applications controls, LLRF, cavity, feedback 446
 
  • J.M. Potter
    JP Accelerator Works, Los Alamos, New Mexico, USA
 
  A novel phase detector has been developed that is suitable for use in an rf phase locked loop for locking an rf source to an rf accelerator structure or phase locking the accelerator structure to a fixed or adjustable frequency rf source. It is also useful for fast phase feedback to control the phase of an accelerator rf field. The principle is applicable to a wide range of frequencies and amplitudes. The phase is uniquely and unambiguously determined over 360°, eliminating the need for external phase shifters or phase references. The operation of this phase detector is described in detail. An application is described that uses a DDS-based LLRF source as the rf input to a high-power rf system.  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-TUPA43  
About • Received ※ 02 August 2022 — Revised ※ 04 August 2022 — Accepted ※ 05 August 2022 — Issue date ※ 06 October 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPA15 High-Field Design Concept for Second Interaction Region of the Electron-Ion Collider electron, collider, luminosity, proton 648
 
  • B.R. Gamage, R. Ent, R. Rajput-Ghoshal, T. Satogata, A. Seryi, W. Wittmer, Y. Zhang
    JLab, Newport News, Virginia, USA
  • D. Arbelaez, P. Ferracin, G.L. Sabbi
    LBNL, Berkeley, California, USA
  • E.C. Aschenauer, J.S. Berg, H. Witte
    BNL, Upton, New York, USA
  • V.S. Morozov
    ORNL RAD, Oak Ridge, Tennessee, USA
  • F. Savary
    CERN, Meyrin, Switzerland
  • P.N. Vedrine
    CEA-DRF-IRFU, France
  • A.V. Zlobin
    Fermilab, Batavia, Illinois, USA
 
  Funding: Contract No. DE-AC05-06OR23177, Contract No. DE-SC0012704 and Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy.
Efficient realization of the scientific potential of the Electron Ion Collider (EIC) calls for addition of a future second Interaction Region (2nd IR) and a detector in the RHIC IR8 region after the EIC project completion. The second IR and detector are needed to independently cross-check the results of the first detector, and to provide measurements with complementary acceptance. The available space in the existing RHIC IR8 and maximum fields achievable with NbTi superconducting magnet technology impose constraints on the 2nd IR performance. Since commissioning of the 2nd IR is envisioned in a few years after the first IR, such a long time frame allows for more R&D on the Nb3Sn magnet technology. Thus, it could provide a potential alternative technology choice for the 2nd IR magnets. Presently, we are exploring its potential benefits for the 2nd IR performance, such as improvement of the luminosity and acceptance, and are also assessing the technical risks associated with use of Nb3Sn magnets. In this paper, we present the current progress of this work.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-WEPA15  
About • Received ※ 04 August 2022 — Revised ※ 11 August 2022 — Accepted ※ 17 August 2022 — Issue date ※ 31 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPA25 Field Emission Mitigation in CEBAF SRF Cavities Using Deep Learning cavity, radiation, neutron, linac 676
 
  • K. Ahammed, J. Li
    ODU, Norfolk, Virginia, USA
  • A. Carpenter, R. Suleiman, C. Tennant, L.S. Vidyaratne
    JLab, Newport News, Virginia, USA
 
  Funding: This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under contract DE-AC05-06OR23177.
The Continuous Electron Beam Accelerator Facility (CEBAF) operates hundreds of superconducting radio frequency (SRF) cavities in its two main linear accelerators. Field emission can occur when the cavities are set to high operating RF gradients and is an ongoing operational challenge. This is especially true in newer, higher gradient SRF cavities. Field emission results in damage to accelerator hardware, generates high levels of neutron and gamma radiation, and has deleterious effects on CEBAF operations. So, field emission reduction is imperative for the reliable, high gradient operation of CEBAF that is required by experimenters. Here we explore the use of deep learning architectures via multilayer perceptron to simultaneously model radiation measurements at multiple detectors in response to arbitrary gradient distributions. These models are trained on collected data and could be used to minimize the radiation production through gradient redistribution. This work builds on previous efforts in developing machine learning (ML) models, and is able to produce similar model performance as our previous ML model without requiring knowledge of the field emission onset for each cavity.
 
poster icon Poster WEPA25 [1.586 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-WEPA25  
About • Received ※ 01 August 2022 — Revised ※ 03 August 2022 — Accepted ※ 05 August 2022 — Issue date ※ 20 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPA42 A Modular X-Ray Detector for Beamline Diagnostics at LANL DTL, diagnostics, shielding, electron 725
 
  • P.M. Freeman, B. Odegard, R. Schmitz, D. Stuart, J. Yang
    UCSB, Santa Barbara, California, USA
  • J. Bohon, M.S. Gulley, E.-C. Huang, J. Smedley
    LANL, Los Alamos, New Mexico, USA
  • L. Malavasi
    WPI, Worcester, MA, USA
 
  An X-ray detector is being developed for diagnostic measurement and monitoring of the Drift Tube LINAC (DTL) at the Los Alamos Neutron Science Center (LANSCE) at Los Alamos National Lab. The detector will consist of a row of x-ray spectrometers adjacent to the DTL that will measure the spectrum of X-rays resulting from bremsstrahlung of electrons created in vacuum by the RF. Each spectrometer will monitor a specific gap between drift tubes, and will consist of an array of scintillating crystals coupled to SiPMs read out with custom-built electronics. The spectrometer is designed with one LYSO and three NaI crystals. The LYSO provides a tagged gamma source with three peaks that are used for calibration of the NaI. A prototype of the spectrometer was tested at the LANSCE DTL to validate the feasibility of measuring gamma spectra and performing self-calibration in situ. A summary of test results with the LANSCE prototype will be presented, along with a detector system design that aims to be modular and inexpensive across all modules in the DTL. Plans for future development will be presented as well.  
poster icon Poster WEPA42 [1.308 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-WEPA42  
About • Received ※ 04 August 2022 — Revised ※ 06 August 2022 — Accepted ※ 09 August 2022 — Issue date ※ 11 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPA64 Design and Commissioning of the ASU CXLS Machine Protection System controls, GUI, klystron, machine-protect 770
 
  • S.P. Jachim, B.J. Cook, J.R.S. Falconer, A.J. Gardeck, W.S. Graves, M.R. Holl, R.S. Rednour, D.M. Smith, J.V. Vela
    Arizona State University, Tempe, USA
 
  Funding: This work was supported in part by NSF award #1935994.
To protect against fault conditions in the high-power RF transport and accelerating structures of the Arizona State University (ASU) Compact X-Ray Light Source (CXLS), the Machine Protection System (MPS) extinguishes the 6.5-MW RF energy sources within approximately 50 ns of the fault event. In addition, each fault is localized and reported remotely via USB for operational and maintenance purposes. This paper outlines the requirements, design, and performance of the MPS applied on the CXLS.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-WEPA64  
About • Received ※ 13 July 2022 — Revised ※ 28 July 2022 — Accepted ※ 08 August 2022 — Issue date ※ 12 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THZE3 An Electrodeless Diamond Beam Monitor electron, experiment, controls, vacuum 904
 
  • S.V. Kuzikov, P.V. Avrakhov, C.-J. Jing, E.W. Knight
    Euclid TechLabs, Solon, Ohio, USA
  • D.S. Doran, C.-J. Jing, J.G. Power, E.E. Wisniewski
    ANL, Lemont, Illinois, USA
  • C.-J. Jing
    Euclid Beamlabs, Bolingbrook, USA
 
  Funding: The work was supported by DoE SBIR grant #DE-SC0019642.
Being a wide-band semiconductor, diamond can be used to measure the flux of passing particles based on a particle-induced conductivity effect. We recently demonstrated a diamond electrodeless electron beam halo monitor. That monitor was based on a thin piece of diamond (blade) placed in an open high-quality microwave resonator. The blade partially intercepted the beam. By measuring the change in RF properties of the resonator, one could infer the beam parameters. At Argonne Wakefield Accelerator we have tested 1D and 2D monitors. To enhance the sensitivity of our diamond sensor, we proposed applying a bias voltage to the diamond which can sustain the avalanche of free carriers. In experiment carried out with 120 kV, ~1 µA beam we showed that the response signal for the avalanche monitor biased with up to 5 kV voltage can be up to 100 times larger in comparison with the signal of the same non-biased device.
 
slides icon Slides THZE3 [4.257 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-THZE3  
About • Received ※ 20 July 2022 — Revised ※ 28 July 2022 — Accepted ※ 06 August 2022 — Issue date ※ 08 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)