MOPA —  Poster Session   (08-Aug-22   16:30—18:00)
Chair: P.M. Anisimov, LANL, Los Alamos, New Mexico, USA
Paper Title Page
MOPA01 Realistic CAD-Based Geometries for Arbitrary Magnets with Beam Delivery Simulation (BDSIM) 55
 
  • E. Ramoisiaux, R. Dantinne, E. Gnacadja, C. Hernalsteens, S. Musibau, B. Ndihokubwayo, N. Pauly, R. Tesse, M. Vanwelde
    ULB, Bruxelles, Belgium
  • S.T. Boogert, L.J. Nevay, W. Shields
    Royal Holloway, University of London, Surrey, United Kingdom
  • C. Hernalsteens
    CERN, Meyrin, Switzerland
 
  Monte Carlo sim­u­la­tions are re­quired to eval­u­ate beam losses and sec­ondary ra­di­a­tion ac­cu­rately in par­ti­cle ac­cel­er­a­tors and beam­lines. De­tailed CAD geome­tries are crit­i­cal to ac­count for a re­al­is­tic dis­tri­b­u­tion of ma­te­r­ial masses but in­crease the model com­plex­ity and often lead to code du­pli­ca­tion. Beam De­liv­ery Sim­u­la­tion (BDSIM) and the Python pack­age pyg4om­e­try en­able han­dling such ac­cel­er­a­tor mod­els within a sin­gle, sim­pli­fied work­flow to run com­plete sim­u­la­tions of pri­mary and sec­ondary par­ti­cle track­ing and in­ter­ac­tions with mat­ter using Geant4 rou­tines. Ad­di­tional ca­pa­bil­i­ties have been de­vel­oped to model ar­bi­trary bent mag­nets by as­so­ci­at­ing ex­ter­nally mod­eled geome­tries to the mag­net poles, yoke, and beampipe. In­di­vid­ual field de­scrip­tions can be as­so­ci­ated with the yoke and vac­uum pipe sep­a­rately to pro­vide fine-grained con­trol of the mag­net model. The im­ple­men­ta­tion of these new fea­tures is de­scribed in de­tail and ap­plied to the mod­el­ing of the CERN Pro­ton Syn­chro­tron (PS) com­bined func­tion mag­nets.  
poster icon Poster MOPA01 [0.781 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA01  
About • Received ※ 02 August 2022 — Revised ※ 07 August 2022 — Accepted ※ 09 August 2022 — Issue date ※ 16 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPA02 Activation of the IBA Proteus One Proton Therapy Beamline Using BDSIM and FISPACT-II 59
 
  • E. Ramoisiaux, E. Gnacadja, C. Hernalsteens, N. Pauly, R. Tesse, M. Vanwelde
    ULB, Bruxelles, Belgium
  • C. Hernalsteens
    CERN, Meyrin, Switzerland
 
  Cy­clotron-based pro­ton ther­apy sys­tems gen­er­ate large fluxes of sec­ondary par­ti­cles due to the beam in­ter­ac­tions with the beam­line el­e­ments, with the en­ergy de­grader being the dom­i­nant source. Com­pact sys­tems ex­ac­er­bate these chal­lenges for con­crete shield­ing and beam­line el­e­ment ac­ti­va­tion. Our im­ple­men­ta­tion of the Rig­or­ous Two-Step method uses Beam De­liv­ery Sim­u­la­tion (BDSIM), a Geant4-based par­ti­cle track­ing code, for pri­mary and sec­ondary par­ti­cles trans­port and flu­ence scor­ing, and FIS­PACT-II for time-de­pen­dent nu­clear in­ven­tory and solv­ing the rate equa­tions. This ap­proach is ap­plied to the Ion Beam Ap­pli­ca­tions (IBA) Pro­teus®ONE (P1) sys­tem, for which a com­plete model has been built, val­i­dated, and used for shield­ing ac­ti­va­tion sim­u­la­tions. We de­tail the first sim­u­la­tions of the ac­ti­va­tion on quadru­pole mag­nets in high-flu­ence lo­ca­tions down­stream of the de­grader. Re­sults show the evo­lu­tion of the long-lived nu­clide con­cen­tra­tions for short and long timescales through­out the fa­cil­ity life­time for a typ­i­cal op­er­a­tion sce­nario.  
poster icon Poster MOPA02 [0.553 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA02  
About • Received ※ 02 August 2022 — Revised ※ 09 August 2022 — Accepted ※ 19 August 2022 — Issue date ※ 21 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPA08 Beamline Optimization Methods for High Intensity Muon Beams at PSI 63
 
  • E.V. Valetov
    PSI, Villigen PSI, Switzerland
 
  Funding: This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 884104 (PSI-FELLOW-III-3i).
We per­form beam­line de­sign op­ti­miza­tion for the High In­ten­sity Muon Beams (HIMB) pro­ject at the Paul Scher­rer In­sti­tute (PSI), which will de­liver muon beams at the un­prece­dented rate of 1·1010 muons/s to next-gen­er­a­tion in­ten­sity fron­tier par­ti­cle physics and ma­te­r­ial sci­ence ex­per­i­ments. For op­ti­miza­tion of the de­sign and op­er­a­tional pa­ra­me­ters to max­i­mize the beam­line trans­mis­sion, we use the asyn­chro­nous Bayesian op­ti­miza­tion pack­age Deep­Hy­per and a cus­tom build of G4beam­line with vari­ance re­duc­tion and mea­sured cross sec­tions. We min­i­mize the beam spot size at the final foci using a COSY IN­FIN­ITY model with dif­fer­en­tial-al­ge­braic sys­tem knobs, where we min­i­mize the re­spec­tive trans­fer map el­e­ments using the Lev­en­berg-Mar­quardt and sim­u­lated an­neal­ing op­ti­miz­ers. We ob­tained a trans­mis­sion of 1.34·1010 muons/s in a G4beam­line model of HIMB’s MUH2 beam­line into the ex­per­i­men­tal area.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA08  
About • Received ※ 02 August 2022 — Revised ※ 08 August 2022 — Accepted ※ 11 August 2022 — Issue date ※ 23 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPA09 Design of a 4D Emittance Diagnostic for Low-Energy Ion Beams 67
 
  • T.R. Curtin, M.S. Curtin
    Ion Linac Systems, Inc., Albuquerque, USA
 
  Char­ac­ter­i­za­tion of ion beams from an ion in­jec­tor con­sist­ing of an elec­tron-cy­clotron-res­o­nance (ECR) source in com­bi­na­tion with a low-en­ergy-beam-trans­port (LEBT) typ­i­cally ex­hibits a com­plex four-di­men­sional trans­verse phase-space dis­tri­b­u­tion. The im­por­tance of mea­sur­ing the ion beam cor­re­la­tions fol­low­ing ex­trac­tion and trans­port of the low-en­ergy beam is crit­i­cal to en­abling op­ti­miza­tion of beam trans­mis­sion through down­stream ac­cel­er­at­ing struc­tures. A de­sign for a trans­verse, four-di­men­sional emit­tance meter for low-en­ergy pro­tons from the Ion Linac Sys­tems (ILS) ECR-LEBT ion in­jec­tor is pro­vided.  
poster icon Poster MOPA09 [0.479 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA09  
About • Received ※ 03 August 2022 — Revised ※ 27 September 2022 — Accepted ※ 05 December 2022 — Issue date ※ 05 December 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPA12 Commissioning of HOM Detectors in the First Cryomodule of the LCLS-II Linac 69
 
  • J.A. Diaz Cruz
    UNM-ECE, Albuquerque, USA
  • B.T. Jacobson, N.R. Neveu, J.P. Sikora
    SLAC, Menlo Park, California, USA
 
  Long-range wake­fields (LRWs) may cause emit­tance di­lu­tion ef­fects. LWRs are es­pe­cially un­wanted at fa­cil­i­ties with low emit­tance beams like the LCLS-II at SLAC. Dipo­lar higher-or­der modes (HOMs) are a set of LRWs that are ex­cited by off-axis beams. Two 4-chan­nel HOM de­tec­tors were built to mea­sure the beam-in­duced HOM sig­nals for TESLA-type su­per­con­duct­ing RF (SRF) cav­i­ties; they were tested at the Fer­mi­lab Ac­cel­er­a­tor Sci­ence and Tech­nol­ogy (FAST) fa­cil­ity and are now in­stalled at SLAC. The HOM de­tec­tors were de­signed to in­ves­ti­gate LRW ef­fects on the beam and to help with beam align­ment. This paper pre­sents pre­lim­i­nary re­sults of HOM mea­sure­ments at the first cry­omod­ule (CM01) of the LCLS-II linac and de­scribes the rel­e­vant hard­ware and setup of the ex­per­i­ment.  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA12  
About • Received ※ 09 August 2022 — Accepted ※ 20 August 2022 — Issue date ※ 31 August 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPA13 Design of a Surrogate Model for MUED at BNL Using VSim, Elegant and HPC 72
 
  • S.I. Sosa Guitron, S. Biedron, T.B. Bolin
    UNM-ECE, Albuquerque, USA
  • S. Biedron
    Element Aero, Chicago, USA
  • S. Biedron
    UNM-ME, Albuquerque, New Mexico, USA
 
  Funding: U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Program of Electron and Scanning Probe Microscopes, award number DE-SC0021365.
The MeV Ul­tra­fast Elec­tron Dif­frac­tion (MUED) in­stru­ment at Brookhaven Na­tional Lab­o­ra­tory is a unique ca­pa­bil­ity for ma­te­r­ial sci­ence. As part of a plan to make MUED a high-through­put user fa­cil­ity, we are ex­plor­ing in­stru­men­ta­tion de­vel­op­ments based on Ma­chine Learn­ing (ML). We are de­vel­op­ing a sur­ro­gate model of MUED that can be used to sup­port con­trol tasks. The sur­ro­gate model will be based on beam sim­u­la­tions that are bench­marked to ex­per­i­men­tal ob­ser­va­tions. We use VSim to model the beam dy­nam­ics of the ra­dio-fre­quency gun and El­e­gant to trans­port the beam through the rest of the beam-line. We also use High Per­for­mance Com­put­ing re­sources from Ar­gonne Lead­er­ship Com­put­ing Fa­cil­ity to gen­er­ate the data for the sur­ro­gate model based on the orig­i­nal sim­u­la­tion as well as train­ing the ML model.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA13  
About • Received ※ 01 August 2022 — Revised ※ 09 August 2022 — Accepted ※ 11 August 2022 — Issue date ※ 21 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPA14 A Wide Dynamic-Range Halo Monitor for 8 GeV Proton Beams at FNAL 75
 
  • Y. Hashimoto, C. Ohmori, T. Sasaki, M. Tejima, T. Toyama, M. Uota
    KEK, Tokai, Ibaraki, Japan
  • R. Ainsworthpresenter
    Fermilab, Batavia, Illinois, USA
  • H. Sakai
    Mitsubishi Electric System & Service Co., Ltd, Tsukuba, Japan
  • Y. Sato
    J-PARC, KEK & JAEA, Ibaraki-ken, Japan
 
  Funding: Foundation: U.S.-Japan Science and Technology Cooperation Program in High Energy Physics.
Elim­i­nat­ing harm­ful beam halos is the most im­por­tant tech­nique for high-in­ten­sity pro­ton ac­cel­er­a­tors. There­fore, beam halo di­ag­no­sis is in­dis­pens­able and be­comes more and more im­por­tant. At J-PARC, a wide dy­namic range mon­i­tor was in­stalled in the beam trans­port line in 2012. The de­vice is a two-di­men­sional beam pro­file mon­i­tor [*, **], and it has a dy­namic range of ap­prox­i­mately six dig­its of mag­ni­tude by using Op­ti­cal Tran­si­tion Ra­di­a­tion and flu­o­res­cence screens. The FNAL ac­cel­er­a­tor com­plex has been up­grad­ing through in­creased beam in­ten­sity and beam qual­ity. A new beam halo di­ag­nos­tic de­vice is re­quired in the beam trans­port line be­tween the booster and re­cy­cler. It will be man­u­fac­tured in a col­lab­o­ra­tion be­tween J-PARC and FNAL as a part of the U.S.-Japan Sci­ence and Tech­nol­ogy Co­op­er­a­tion Pro­gram in High En­ergy Physics. We are re­design­ing the mon­i­tor to sat­isfy FNAL spec­i­fi­ca­tions for beam en­ergy, in­ten­sity, and size. The equip­ment will be man­u­fac­tured at J-PARC and then shipped to FNAL in 2024. In this re­port, the de­sign of the de­vice will be de­scribed.
* https://accelconf.web.cern.ch/IBIC2013/papers/tucl2.pdf
** http://accelconf.web.cern.ch/HB2014/papers/tuo2ab04.pdf
 
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA14  
About • Received ※ 03 August 2022 — Revised ※ 07 August 2022 — Accepted ※ 11 August 2022 — Issue date ※ 09 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPA15 Synchronous High-Frequency Distributed Readout for Edge Processing at the Fermilab Main Injector and Recycler 79
 
  • J.R. Berlioz, J.M.S. Arnold, M.R. Austin, P.M. Hanlet, K.J. Hazelwood, M.A. Ibrahim, A. Narayanan, D.J. Nicklaus, G. Pradhan, A.L. Saewert, B.A. Schupbach, R.M. Thurman-Keup, N.V. Tran
    Fermilab, Batavia, Illinois, USA
  • J. Jiang, H. Liu, S. Memik, R. Shi, M. Thieme, D. Ulusel
    Northwestern University, Evanston, Illinois, USA
  • A. Narayanan
    Northern Illinois University, DeKalb, Illinois, USA
 
  Funding: Operated by Fermi Research Alliance, LLC under Contract No.De-AC02-07CH11359 with the United States Department of Energy. Additional funding provided by Grant Award No. LAB 20-2261
The Main In­jec­tor (MI) was com­mis­sioned using data ac­qui­si­tion sys­tems de­vel­oped for the Fer­mi­lab Main Ring in the 1980s. New VME-based in­stru­men­ta­tion was com­mis­sioned in 2006 for beam loss mon­i­tors (BLM), which pro­vided a more sys­tem­atic study of the ma­chine and im­proved dis­plays of rou­tine op­er­a­tion. How­ever, cur­rent pro­jects are de­mand­ing more data and at a faster rate from this aging hard­ware. One such pro­ject, Real-time Edge AI for Dis­trib­uted Sys­tems (READS), re­quires the high-fre­quency, low-la­tency col­lec­tion of syn­chro­nized BLM read­ings from around the ap­prox­i­mately two-mile ac­cel­er­a­tor com­plex. Sig­nif­i­cant work has been done to de­velop new hard­ware to mon­i­tor the VME back­plane and broad­cast BLM mea­sure­ments over Eth­er­net, while not dis­rupt­ing the ex­ist­ing op­er­a­tions-crit­i­cal func­tions of the BLM sys­tem. This paper will de­tail the de­sign, im­ple­men­ta­tion, and test­ing of this par­al­lel data path­way.
 
poster icon Poster MOPA15 [1.641 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA15  
About • Received ※ 03 August 2022 — Revised ※ 04 August 2022 — Accepted ※ 14 August 2022 — Issue date ※ 19 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPA17 Symplectic Particle Tracking in a Thick Nonlinear McMillan Lens for the Fermilab Integrable Optics Test Accelerator (IOTA) 83
 
  • B.L. Cathey, G. Stancari, T. Zolkin
    Fermilab, Batavia, Illinois, USA
 
  Funding: This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.
The McMil­lan sys­tem is a novel method to in­crease the tune spread of a beam with­out de­creas­ing its dy­namic aper­ture due to the sys­tem’s in­te­gra­bil­ity. While the ideal sys­tem is based on an in­fi­nitely thin kick, the phys­i­cal de­sign re­quires a thick elec­tron lens, in­clud­ing a so­le­noid. Par­ti­cle trans­port through the lens is dif­fi­cult to sim­u­late due to the na­ture of the force on the cir­cu­lat­ing beam. This paper demon­strates ac­cu­rate sim­u­la­tion of a thick McMil­lan lens in a so­le­noid using sym­plec­tic in­te­gra­tors de­rived from Yoshida’s method.
 
poster icon Poster MOPA17 [2.290 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA17  
About • Received ※ 03 August 2022 — Revised ※ 04 August 2022 — Accepted ※ 09 August 2022 — Issue date ※ 09 October 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPA18 Residual Dose and Environmental Monitoring for the Fermilab Main Injector Tunnel Using the Data Acquisition Logging Engine (Dale) 87
 
  • N. Chelidze, R. Ainsworth, B.C. Brown, D. Capista, K.J. Hazelwood, D.K. Morris, M.J. Murphy
    Fermilab, Batavia, Illinois, USA
 
  Funding: Fermi National Accelerator Laboratory
The Re­cy­cler and the Main In­jec­tor are part of the Fer­mi­lab Ac­cel­er­a­tor com­plex used to de­liver pro­ton beam to the dif­fer­ent ex­per­i­ments. It is very im­por­tant to con­trol and min­i­mize losses in both ma­chines dur­ing op­er­a­tion, to re­duce per­son­nel dose from resid­ual ac­ti­va­tion and to pre­serve com­po­nent life­time. To min­i­mize losses, we need to iden­tify the loss points and ad­just the com­po­nents ac­cord­ingly. The Data Ac­qui­si­tion Loss En­gine (DALE) plat­form has been de­vel­oped within the Main In­jec­tor de­part­ment and up­graded through­out the years. DALE is used to sur­vey the en­tire en­clo­sure for resid­ual dose rates and en­vi­ron­men­tal read­ings when un­re­stricted ac­cess to the en­clo­sure is pos­si­ble. Cur­rently DALE has two ra­di­a­tion me­ters, which are aligned along each ma­chine, so loss points can be iden­ti­fied for both at the same time. DALE at­taches to the en­clo­sure carts and is con­tin­u­ously in mo­tion mon­i­tor­ing dose rates and other en­vi­ron­men­tal read­ings. In this paper we will de­scribe how DALE is used to pro­vide ra­di­a­tion maps of the resid­ual dose rates in the en­clo­sure. We will also com­pare the loss points with the Beam Loss mon­i­tor data.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA18  
About • Received ※ 02 August 2022 — Revised ※ 05 August 2022 — Accepted ※ 11 August 2022 — Issue date ※ 21 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPA19 The Effect of the Main Injector Ramp on the Recycler 90
 
  • N. Chelidze, R. Ainsworth, K.J. Hazelwood
    Fermilab, Batavia, Illinois, USA
 
  The Re­cy­cler and Main In­jec­tor are part of the Fer­mi­lab Ac­cel­er­a­tor com­plex used to de­liver a high power pro­ton beam. Both ma­chines share the same en­clo­sure with the Re­cy­cler mounted 6 ft above the Main In­jec­tor. The Main In­jec­tor ac­cel­er­ates beam from 8 GeV to 120 GeV. While the ma­jor­ity of the Re­cy­cler has mu metal shield­ing, the ef­fect of the Main In­jec­tor ramp is still sig­nif­i­cant and can af­fect both the tunes and the orbit. In this paper, we de­tail the size of these ef­fects.  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA19  
About • Received ※ 02 August 2022 — Accepted ※ 04 August 2022 — Issue date ※ 23 August 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPA21 Effect of Electropolishing on Nitrogen Doped and Undoped Niobium Surfaces 93
 
  • V. Chouhan, F. Furuta, M. Martinello, T.J. Ring, G. Wu
    Fermilab, Batavia, Illinois, USA
 
  Cold elec­trop­o­l­ish­ing (EP) of a ni­tro­gen-doped (N-doped) nio­bium (Nb) su­per­con­duct­ing RF (SRF) cav­ity was found to im­prove its qual­ity fac­tor. In order to un­der­stand the ef­fect of EP tem­per­a­ture on N-doped and un­doped sur­faces, a sys­tem­atic EP study was con­ducted with 2/0 N-doped and heat-treated Nb sam­ples in a beaker. The Nb sam­ples were elec­trop­o­l­ished at dif­fer­ent sur­face tem­per­a­tures rang­ing from 0 to 42 C. The re­sults showed that the doped sur­face was sus­cep­ti­ble to the sam­ple tem­per­a­ture dur­ing EP. EP re­sulted in the sur­face pit­ting on the doped sam­ples where the num­ber den­sity of pits in­creased at a higher tem­per­a­ture. The sur­face re­sults were com­pared with the sur­face of cutouts from a 9-cell cav­ity which was 2/0 N-doped and elec­trop­o­l­ished. This paper shows de-tailed sur­face fea­tures of the N-doped and un­doped Nb sur­faces elec­trop­o­l­ished at dif­fer­ent tem­per­a­tures.  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA21  
About • Received ※ 20 July 2022 — Revised ※ 24 July 2022 — Accepted ※ 09 August 2022 — Issue date ※ 11 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPA22 Study on Electropolishing Conditions for 650 MHz Niobium SRF Cavity 97
 
  • V. Chouhan, D.J. Bice, F. Furuta, M. Martinello, M.K. Ng, H. Park, T.J. Ring, G. Wu
    Fermilab, Batavia, Illinois, USA
  • B.M. Guilfoyle, M.P. Kelly, T. Reid
    ANL, Lemont, Illinois, USA
 
  The PIP II lin­ear ac­cel­er­a­tor in­cludes dif­fer­ent types of nio­bium SRF cav­i­ties in­clud­ing 650 MHz el­lip­ti­cal low (0.61) and high (0.92) beta cav­i­ties. The el­lip­ti­cal cav­ity sur­face is processed with the elec­trop­o­l­ish­ing method. The el­lip­ti­cal cav­i­ties es­pe­cially the low-beta 650 MHz cav­i­ties showed a rough equa­tor sur­face after the EP was per­formed with the stan­dard EP con­di­tions. This work was fo­cused to study the ef­fect of dif­fer­ent EP pa­ra­me­ters, in­clud­ing cath­ode sur­face area, tem­per­a­ture and volt­age, and op­ti­mize them to im­prove the cav­ity sur­face.  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA22  
About • Received ※ 02 August 2022 — Revised ※ 09 August 2022 — Accepted ※ 11 August 2022 — Issue date ※ 03 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPA23 Tests of the Extended Range SRF Cavity Tuners for the LCLS-II HE Project 100
 
  • C. Contreras-Martinez, T.T. Arkan, A.T. Cravatta, B.D. Hartsell, J.A. Kaluzny, T.N. Khabiboulline, Y.M. Pischalnikov, S. Posen, G.V. Romanov, J.C. Yun
    Fermilab, Batavia, Illinois, USA
 
  The LCLS-II HE su­per­con­duct­ing linac will pro­duce multi-en­ergy beams by sup­port­ing mul­ti­ple un­du­la­tor lines si­mul­ta­ne­ously. This could be achieved by using the cav­ity SRF tuner in the off-fre­quency de­tune mode. This off-fre­quency op­er­a­tion method was tested in the ver­i­fi­ca­tion cry­omod­ule (vCM) and CM 1 at Fer­mi­lab at 2 K. In both cases, the tuners achieved a fre­quency shift of -565±80 kHz. This study will dis­cuss cav­ity fre­quency dur­ing each step as it is being as­sem­bled in the cry­omod­ule string and fi­nally when it is being tested at 2 K. Track­ing the cav­ity fre­quency helped en­able the tuners to reach this large fre­quency shift. The spe­cific pro­ce­dures of tuner set­ting dur­ing as­sem­bly will be pre­sented.  
poster icon Poster MOPA23 [0.654 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA23  
About • Received ※ 03 August 2022 — Revised ※ 11 August 2022 — Accepted ※ 19 August 2022 — Issue date ※ 31 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPA24 LCLS-II and HE Cryomodule Microphonics at CMTF at Fermilab 103
 
  • C. Contreras-Martinez, B.E. Chase, A.T. Cravatta, J.A. Einstein-Curtis, E.R. Harms, J.P. Holzbauer, J.N. Makara, S. Posen, R. Wang
    Fermilab, Batavia, Illinois, USA
  • L.R. Doolittle
    LBNL, Berkeley, California, USA
 
  Mi­cro­phon­ics causes the cav­ity to de­tune. This study dis­cusses the mi­cro­phon­ics of 16 cry­omod­ules, 14 for LCLS-II and 2 for LCLS-II HE tested at CMTF. The peak de­tun­ing, as well as the RMS de­tun­ing for each cry­omod­ule, will be dis­cussed. For each cry­omod­ule, the data was taken with enough soak­ing time to pre­vent any ther­mal­iza­tion ef­fects which can show up in the de­tun­ing. Each data cap­ture taken was 30 min­utes or longer and sam­pled at 1 kHz.  
poster icon Poster MOPA24 [1.428 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA24  
About • Received ※ 03 August 2022 — Revised ※ 10 August 2022 — Accepted ※ 11 August 2022 — Issue date ※ 20 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPA25 Simulated Lorentz Force Detuning Compensation with a Double Lever Tuner on a Dressed ILC/1.3 GHz Cavity at Room Temperature 106
 
  • C. Contreras-Martinez, Y.M. Pischalnikov, J.C. Yun
    Fermilab, Batavia, Illinois, USA
 
  Pulsed SRF linacs with high ac­cel­er­at­ing gra­di­ents ex­pe­ri­ence large fre­quency shifts caused by Lorentz force de­tun­ing (LFD). A piezo­elec­tric ac­tu­a­tor with a res­o­nance con­trol al­go­rithm can main­tain the cav­ity fre­quency at the nom­i­nal level thus re­duc­ing the RF power. This study uses a dou­ble lever tuner with a piezo­elec­tric ac­tu­a­tor for com­pen­sa­tion and an­other piezo­elec­tric ac­tu­a­tor to sim­u­late the ef­fects of the Lorentz force pulse. A dou­ble lever tuner has an ad­van­tage by in­creas­ing the stiff­ness of the cav­ity-tuner sys­tem thus re­duc­ing the ef­fects of LFD. The tests are con­ducted at room tem­per­a­ture and with a dressed 1.3 GHz 9-cell cav­ity.  
poster icon Poster MOPA25 [0.931 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA25  
About • Received ※ 03 August 2022 — Revised ※ 09 August 2022 — Accepted ※ 11 August 2022 — Issue date ※ 13 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPA27 Validation of the 650 MHz SRF Tuner on the Low and High Beta Cavities for PIP-II at 2 K 109
 
  • C. Contreras-Martinez, S.K. Chandrasekaran, S. Cheban, G.V. Eremeev, I.V. Gonin, T.N. Khabiboulline, Y.M. Pischalnikov, O.V. Prokofiev, A.I. Sukhanov, J.C. Yun
    Fermilab, Batavia, Illinois, USA
 
  The PIP-II linac will in­clude thirty-six BG=0.61 and twenty-four BG=0.92 650 MHz 5 cell el­lip­ti­cal SRF cav­i­ties. Each cav­ity will be equipped with a tun­ing sys­tem con­sist­ing of a dou­ble lever slow tuner for coarse fre­quency tun­ing and a piezo­elec­tric ac­tu­a­tor for fine fre­quency tun­ing. The same tuner will be used for both the BG=0.61 and BG=0.92 cav­i­ties. Re­sults of test­ing the cav­ity-tuner sys­tem for the BG=0.61 will be pre­sented for the first time.  
poster icon Poster MOPA27 [0.782 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA27  
About • Received ※ 03 August 2022 — Revised ※ 10 August 2022 — Accepted ※ 11 August 2022 — Issue date ※ 04 October 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPA28 Semantic Regression for Disentangling Beam Losses in the Fermilab Main Injector and Recycler 112
 
  • M. Thieme, H. Liu, S. Memik, R. Shi
    Northwestern University, Evanston, Illinois, USA
  • J.M.S. Arnold, M.R. Austin, P.M. Hanlet, K.J. Hazelwoodpresenter, M.A. Ibrahim, V.P. Nagaslaev, A. Narayanan, D.J. Nicklaus, G. Pradhan, A.L. Saewert, B.A. Schupbach, K. Seiya, R.M. Thurman-Keup, N.V. Tran
    Fermilab, Batavia, Illinois, USA
 
  Funding: Operated by Fermi Research Alliance, LLC under Contract No.De-AC02-07CH11359 with the United States Department of Energy. Additional funding provided by Grant Award No. LAB 20-2261, Batavia, IL USA
Fer­mi­lab’s Main In­jec­tor en­clo­sure houses two ac­cel­er­a­tors: the Main In­jec­tor (MI) and the Re­cy­cler (RR). In pe­ri­ods of joint op­er­a­tion, when both ma­chines con­tain high in­ten­sity beam, ra­dia­tive beam losses from MI and RR over­lap on the en­clo­sure’s beam loss mon­i­tor­ing (BLM) sys­tem, mak­ing it dif­fi­cult to at­tribute those losses to a sin­gle ma­chine. In­cor­rect di­ag­noses re­sult in un­nec­es­sary down­time that in­curs both fi­nan­cial and ex­per­i­men­tal cost. In this work, we in­tro­duce a novel neural ap­proach for au­to­mat­i­cally dis­en­tan­gling each ma­chine’s con­tri­bu­tions to those mea­sured losses. Using a con­tin­u­ous adap­ta­tion of the pop­u­lar UNet ar­chi­tec­ture in con­junc­tion with a novel data aug­men­ta­tion scheme, our model ac­cu­rately in­fers the ma­chine of ori­gin on a per-BLM basis in pe­ri­ods of joint and in­de­pen­dent op­er­a­tion. Cru­cially, by ex­tract­ing beam loss in­for­ma­tion at vary­ing re­cep­tive fields, the method is ca­pa­ble of learn­ing both local and global ma­chine sig­na­tures and pro­duc­ing high qual­ity in­fer­ences using only raw BLM loss mea­sure­ments.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA28  
About • Received ※ 02 August 2022 — Revised ※ 05 August 2022 — Accepted ※ 06 August 2022 — Issue date ※ 03 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPA29 Second Generation Fermilab Main Injector 8 GeV Beamline Collimation Preliminary Design 116
 
  • K.J. Hazelwood, P. Adamson, B.C. Brown, D. Capista, R.M. Donahue, B.L. Klein, N.V. Mokhov, V.S. Pronskikh, V.I. Sidorov, M.C. Vincent
    Fermilab, Batavia, Illinois, USA
 
  The cur­rent Fer­mi­lab Main In­jec­tor 8 GeV beam­line trans­verse col­li­ma­tion sys­tem was in­stalled in 2006. Since then, pro­ton beam in­ten­si­ties and rates have in­creased sig­nif­i­cantly. With the promise of even greater beam in­ten­si­ties and a faster rep­e­ti­tion rate when the PIP-II up­grade com­pletes later this decade, the cur­rent col­li­ma­tion sys­tem will be in­suf­fi­cient. Over the past 18 months, mul­ti­ple col­li­ma­tion de­signs have been in­ves­ti­gated, some more tra­di­tional and oth­ers novel. A pre­lim­i­nary de­sign re­view was con­ducted and a de­sign cho­sen. Work is un­der­way to fi­nal­ize the cho­sen de­sign, pro­to­type some of its novel com­po­nents and pro­cure parts for in­stal­la­tion Sum­mer 2023.  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA29  
About • Received ※ 03 August 2022 — Revised ※ 08 August 2022 — Accepted ※ 15 August 2022 — Issue date ※ 25 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPA30 LCLS-II BCS Average Current Monitor 120
 
  • N.M. Ludlow, T.L. Allison, J.P. Sikora, J.J. Welch
    SLAC, Menlo Park, California, USA
 
  LCLS-II is a 4th gen­er­a­tion light source at the SLAC Na­tional Ac­cel­er­a­tor Lab­o­ra­tory. LCLS-II will ac­cel­er­ate a 30 µA elec­tron beam with a 1 MHz bunch rate with a new su­per­con­duct­ing Con­tin­u­ous Wave­form (CW) RF ac­cel­er­a­tor. The Av­er­age Cur­rent Mon­i­tor (ACM) is part of the Beam Con­tain­ment Sys­tem (BCS) for the LCLS-II ac­cel­er­a­tor. The Beam Con­tain­ment Sys­tem is a safety sys­tem that pro­vides paths to safely shut the ac­cel­er­a­tor beam off under a va­ri­ety of con­di­tions. The Av­er­age Cur­rent Mon­i­tor is a beam di­ag­nos­tic within the BCS that is used to ver­ify that the ac­cel­er­a­tor is pro­duc­ing the ap­pro­pri­ate cur­rent level and to limit beam power to al­lowed val­ues to pro­tect the ma­chine and beam dumps. The av­er­age beam cur­rent is ob­tained by mea­sur­ing the power level in­duced by the beam in a low Q cav­ity. By know­ing the Q, the beta, and the cou­pling of the cav­ity, the in­stan­ta­neous charge can be cal­cu­lated, then in­te­grat­ing the in­stan­ta­neous charge over one mil­lisec­ond will yield the av­er­age cur­rent. This paper will dis­cuss progress in the check­out process of the ACM LLRF hard­ware lead­ing to LCLS-II com­mis­sion­ing.  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA30  
About • Received ※ 16 July 2022 — Revised ※ 05 August 2022 — Accepted ※ 24 August 2022 — Issue date ※ 06 October 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPA33 Waker Experiments at Fermilab Recycler Ring 124
 
  • O. Mohsen, R. Ainsworth, N. Eddy
    Fermilab, Batavia, Illinois, USA
 
  At­tain­ing high-in­ten­sity hadron beams is often lim­ited due to the trans­verse col­lec­tive in­sta­bil­i­ties, whose un­der­stand­ing is thus re­quired to see and pos­si­bly ex­tend the in­ten­sity lim­i­ta­tions. To ex­plore such in­sta­bil­i­ties, a novel ar­ti­fi­cial wake sys­tem, the waker, has been built and tested at the Fer­mi­lab Re­cy­cler Ring (RR). In this re­port, we show re­cent up­grades of the waker. Also, we pre­sent ex­per­i­men­tal stud­ies of in­sta­bil­i­ties at var­i­ous space charge and wake pa­ra­me­ters.  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA33  
About • Received ※ 03 August 2022 — Revised ※ 08 August 2022 — Accepted ※ 11 August 2022 — Issue date ※ 28 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPA34 Noise in Intense Electron Bunches 128
 
  • S. Nagaitsev, D.R. Broemmelsiek, J.D. Jarvis, A.H. Lumpkin, J. Ruan, G.W. Saewert, R.M. Thurman-Keup
    Fermilab, Batavia, Illinois, USA
  • Z. Huang, G. Stupakov
    SLAC, Menlo Park, California, USA
  • Y.K. Kim
    University of Chicago, Chicago, Illinois, USA
 
  We re­port on our in­ves­ti­ga­tions into den­sity fluc­tu­a­tions in elec­tron bunches. Noise and den­sity fluc­tu­a­tions in rel­a­tivis­tic elec­tron bunches, ac­cel­er­ated in a linac, are of crit­i­cal im­por­tance to var­i­ous Co­her­ent Elec­tron Cool­ing (CEC) con­cepts as well as to free-elec­tron lasers (FELs). For CEC, the beam noise re­sults in ad­di­tional dif­fu­sion that coun­ter­acts cool­ing. In SASE FELs, a mi­crowave in­sta­bil­ity starts from the ini­tial noise in the beam and even­tu­ally leads to the beam mi­crobunch­ing yield­ing co­her­ent ra­di­a­tion, and the ini­tial noise in the FEL band­width plays a use­ful role. In seeded FELs, in con­trast, such noise in­ter­feres with the seed sig­nal, so that re­duc­ing noise at the ini­tial seed wave­length would lower the seed laser power re­quire­ment. Sta­tus of the pro­ject will be pre­sented.  
poster icon Poster MOPA34 [0.638 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA34  
About • Received ※ 10 August 2022 — Revised ※ 11 August 2022 — Accepted ※ 14 August 2022 — Issue date ※ 24 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPA36 Optimization of Superconducting Linac for Proton Improvement Plan-II (PIP-II) 132
 
  • A. Pathak, E. Pozdeyev
    Fermilab, Batavia, Illinois, USA
 
  PIP-II is an es­sen­tial up­grade of the Fer­mi­lab com­plex that will en­able the world’s most in­tense high-en­ergy beam of neu­tri­nos for the in­ter­na­tional Deep Un­der­ground Neu­trino Ex­per­i­ment at LBNF and sup­port a broad physics pro­gram at Fer­mi­lab. Ul­ti­mately, the PIP-II su­per­con­duct­ing linac will be ca­pa­ble of ac­cel­er­at­ing the H CW beam to 800 MeV with an av­er­age power of 1.6 MW. To op­er­ate the linac with such high power, beam losses and beam emit­tance growth must be tightly con­trolled. In this paper, we pre­sent the re­sults of global op­ti­miza­tion of the Linac op­tions to­wards a ro­bust and ef­fi­cient physics de­sign for the su­per­con­duct­ing sec­tion of the PIP-II linac. We also in­ves­ti­gate the im­pact of the non­lin­ear field of the di­pole cor­rec­tors on the beam qual­ity and de­rive the re­quire­ment on the field qual­ity using sta­tis­ti­cal analy­sis. Fi­nally, we as­sess the need to cor­rect the quadru­pole fo­cus­ing pro­duced by Half Wave, and Sin­gle Spoke ac­cel­er­at­ing cav­i­ties. We as­sess the fea­si­bil­ity of con­trol­ling the beam cou­pling in the ma­chine by chang­ing the po­lar­ity of the field of Linac fo­cus­ing so­le­noids  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA36  
About • Received ※ 02 August 2022 — Revised ※ 04 August 2022 — Accepted ※ 10 August 2022 — Issue date ※ 01 October 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPA38 Accelerated Lifetime Test of the SRF Dressed Cavity/Tuner System for the LCLS II HE Project 136
 
  • Y.M. Pischalnikov, T.T. Arkan, C. Contreras-Martinez, B.D. Hartsell, J.A. Kaluzny, Y.M. Orlov, R.V. Pilipenko, J.C. Yun
    Fermilab, Batavia, Illinois, USA
  • W. Lahmadi
    Wahid Lahmadi, Williston, USA
 
  The off-fre­quency de­tune method is being con­sid­ered for ap­pli­ca­tion in the LCLS-II-HE su­per­con­duct­ing linac to pro­duce multi-en­ergy elec­tron beams for sup­port­ing mul­ti­ple un­du­la­tor lines si­mul­ta­ne­ously. De­sign of the tuner has been changed to de­liver roughly 3 times larger fre­quency tun­ing range. Work­ing re­quire­ments for off-fre­quency op­er­a­tion (OFO) state that cav­i­ties be tuned at least twice a month. This spec­i­fi­ca­tion re­quires the in­crease of the tuner longevity by 30 times com­pared with LCLS-II de­mands. Ac­cel­er­ated longevity tests of the LCLS-II HE dressed cav­ity with tuner were con­ducted at FNAL’s HTS. De­tail analy­sis of wear­ing and im­pacts on per­for­mances of the tuner’s piezo and step­per motor ac­tu­a­tors will be pre­sented. Ad­di­tion­ally, re­sults of longevity test­ing of the dressed cav­ity bel­low, when cooled down to 2 K and com­pressed by 2.6 mm for roughly 2000 cy­cles, will be pre­sented.  
poster icon Poster MOPA38 [3.026 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA38  
About • Received ※ 29 July 2022 — Revised ※ 06 August 2022 — Accepted ※ 09 August 2022 — Issue date ※ 11 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPA41 Diagnostics for LINAC Optimization with Machine Learning 139
 
  • R.V. Sharankova, M.W. Mwaniki, K. Seiya, M.E. Wesley
    Fermilab, Batavia, Illinois, USA
 
  The Fer­mi­lab Linac de­liv­ers 400 MeV H beam to the rest of the ac­cel­er­a­tor chain. Pro­vid­ing sta­ble in­ten­sity, en­ergy, and emit­tance is key since it di­rectly af­fects down­stream ma­chines. To op­er­ate high cur­rent beam, ac­cel­er­a­tors must min­i­mize un­con­trolled par­ti­cle loss; this is gen­er­ally ac­com­plished by min­i­miz­ing beam emit­tance. Am­bi­ent tem­per­a­ture and hu­mid­ity vari­a­tions are known to af­fect res­o­nance fre­quency of the ac­cel­er­at­ing cav­i­ties which in­duces emit­tance growth. In ad­di­tion, the en­ergy and phase space dis­tri­b­u­tion of par­ti­cles emerg­ing from the ion source are sub­ject to fluc­tu­a­tions. To counter these ef­fects we are work­ing on im­ple­ment­ing dy­namic lon­gi­tu­di­nal pa­ra­me­ter op­ti­miza­tion based on Ma­chine Learn­ing (ML). As an input for the ML model, sig­nals from beam di­ag­nos­tic have to be well un­der­stand and re­li­able. We have been re­vis­it­ing di­ag­nos­tics in the linac. In this pre­sen­ta­tion we dis­cuss the sta­tus of the di­ag­nos­tics and beam stud­ies as well as the sta­tus and plans for ML-based op­ti­miza­tion.  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA41  
About • Received ※ 05 August 2022 — Accepted ※ 06 August 2022 — Issue date ※ 07 September 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPA42 Considerations Concerning the Use of HTS Conductor for Accelerator Dipoles with Inductions above 15 T 143
 
  • M.A. Green
    LBNL, Berkeley, California, USA
 
  Funding: This work was supported by the office of Science, under US Department of Energy contract number DE-AC-02-05CH11231.
The use of high tem­per­a­ture su­per­con­duc­tors for ac­cel­er­a­tor di­pole has been dis­cussed for about twenty years and maybe a lit­tle more. Con­duc­tors that can po­ten­tially be used for ac­cel­er­a­tor mag­nets have been avail­able for about fif­teen years. These con­duc­tors are REBCO tape con­duc­tors, which can be wound into coils with no re­ac­tion after wind­ing, and BISSCO cable con­duc­tors, which re­quire re­ac­tion after wind­ing and in­su­la­tion after re­ac­tion in a process sim­i­lar to Nb3Sn ca­bles. Both con­duc­tors are ex­pen­sive and the process after re­act­ing is ex­pen­sive. Some un­known fac­tors that re­main: Will ei­ther con­duc­tor de­grade in cur­rent car­ry­ing ca­pac­ity with re­peated cy­cling like Nb3Sn ca­bles do? The other two is­sues are prob­lems for both types of HTS con­duc­tors and they are; 1) quench pro­tec­tion in the event of a nor­mal re­gion run-away and 2) deal­ing with the su­per­con­duct­ing mag­ne­ti­za­tion in­her­ent with HTS ca­bles and tapes. This paper will dis­cuss the last two is­sues and maybe will pro­vide a par­tial so­lu­tion to these prob­lems.
 
poster icon Poster MOPA42 [1.498 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA42  
About • Received ※ 01 August 2022 — Revised ※ 08 August 2022 — Accepted ※ 11 August 2022 — Issue date ※ 23 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPA43 Dee Voltage Regulator for the 88-Inch Cyclotron 147
 
  • M. Kireeff, P. Bloemhard, T. Hassan, L. Phair
    LBNL, Berkeley, California, USA
 
  Funding: This work was supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under Contract No. DE-AC02-05CH11231
A new broad­band Dee volt­age reg­u­la­tor was de­signed and built for the 88-Inch Cy­clotron at Lawrence Berke­ley Na­tional Lab­o­ra­tory. The pre­vi­ous reg­u­la­tor was ob­so­lete, con­se­quently, it was dif­fi­cult to trou­bleshoot and re­pair. Ad­di­tion­ally, dur­ing op­er­a­tion, it dis­played prob­lems of dis­tor­tion and sta­bil­ity at cer­tain fre­quen­cies. The new reg­u­la­tor uses off-the-shelf com­po­nents that can de­tect and dis­able the RF dur­ing spark­ing events, pro­tect­ing the RF dri­ver sys­tem. Fur­ther­more, it im­proves the tun­ing of the cy­clotron and al­lows con­sis­tency in op­er­a­tion.
 
poster icon Poster MOPA43 [1.032 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA43  
About • Received ※ 02 August 2022 — Revised ※ 04 August 2022 — Accepted ※ 16 August 2022 — Issue date ※ 09 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPA44 Utilizing Python to Prepare the VENUS Ion Source for Machine Learning 151
 
  • A. Kireeff, L. Phair, M.J. Regis, M. Salathe, D.S. Todd
    LBNL, Berkeley, California, USA
 
  Funding: This work was supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under Contract No. DE-AC02-05CH11231.
The fully su­per­con­duct­ing elec­tron cy­clotron res­o­nance (ECR) ion source VENUS is one of the world’s two high­est-per­form­ing ECR ion sources, and a copy of this source will soon be used to pro­duce ion beams at FRIB. The tun­ing and op­ti­miza­tion of ECR ion sources is time con­sum­ing, and there are few de­tailed the­o­ret­i­cal mod­els to guide this work. To aid in this process, we are work­ing to­ward uti­liz­ing ma­chine learn­ing to both ef­fi­ciently op­ti­mize VENUS and re­li­ably main­tain its sta­bil­ity for long cam­paigns. We have cre­ated a Python li­brary to in­ter­face with the pro­gram­ma­ble logic con­troller (PLC) in order to op­er­ate VENUS and col­lect and store source and beam data. We will dis­cuss the de­sign and safety con­sid­er­a­tions that went into cre­at­ing this li­brary, the im­ple­men­ta­tion of the li­brary, and some of the ca­pa­bil­i­ties it en­ables.
 
poster icon Poster MOPA44 [0.862 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA44  
About • Received ※ 17 July 2022 — Revised ※ 27 July 2022 — Accepted ※ 05 August 2022 — Issue date ※ 16 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPA45 Vacuum Electron Devices in the 88-Inch Cyclotron 154
 
  • M. Kireeff Covo, J.Y. Benitez, P. Bloemhard, J.P. Garcia, B. Ninemire, L. Phair, D.S. Todd, D.Z. Xie
    LBNL, Berkeley, California, USA
 
  Funding: This work was supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under Contract No. DE-AC02-05CH11231
The 88-Inch Cy­clotron at Lawrence Berke­ley Na­tional Lab­o­ra­tory is a sec­tor-fo­cused cy­clotron that has light- and heavy-ion ca­pa­bil­i­ties and sup­ports a local re­search pro­gram in Nu­clear Sci­ence and is the home of the Berke­ley Ac­cel­er­a­tor Space Ef­fects Fa­cil­ity, which stud­ies ef­fects of ra­di­a­tion on mi­cro­elec­tron­ics, op­tics, ma­te­ri­als, and cells. The cy­clotron uti­lizes sev­eral vac­uum elec­tron de­vices (VEDs) in dif­fer­ent sys­tems, mainly to con­vey plasma heat­ing, high power RF gen­er­a­tion, and high-volt­age and cur­rent DC power gen­er­a­tion. VEDs have been proven re­li­able, ro­bust, and ra­di­a­tion re­sis­tant. They also have wide range, good re­sponse against tran­sients, and sta­ble op­er­a­tion with load mis­match dur­ing sys­tem tun­ing, in­sta­bil­i­ties, or break­downs. The paper will de­scribe ap­pli­ca­tions of these de­vices in the 88-Inch Cy­clotron
 
poster icon Poster MOPA45 [1.434 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA45  
About • Received ※ 02 August 2022 — Revised ※ 08 August 2022 — Accepted ※ 11 August 2022 — Issue date ※ 12 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPA46 Cryogenic Dielectric Structure with GΩ/m Level Shunt Impedance 157
 
  • R.A. Kostin, C. Jing
    Euclid Beamlabs, Bolingbrook, USA
 
  Shunt im­ped­ance is one of the most im­por­tant pa­ra­me­ters char­ac­ter­iz­ing par­ti­cle ac­cel­er­a­tion ef­fi­ciency. It is known that RF losses are re­duced at cryo­genic tem­per­a­tures. For ex­am­ple, a record high shunt im­ped­ance of 350 MΩ/m was demon­strated re­cently for all metal X-band ac­cel­er­at­ing struc­ture, which is more than 2 times higher than that at room tem­per­a­ture. In this ar­ti­cle we pre­sent a novel hy­brid di­elec­tric struc­ture which can achieve even higher shunt im­ped­ance due to the fact that losses in di­elec­tric ma­te­ri­als re­duced much more than in pure cop­per.  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA46  
About • Received ※ 12 August 2022 — Revised ※ 16 August 2022 — Accepted ※ 23 August 2022 — Issue date ※ 17 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPA50 Integrated Photonics Structure Cathodes for Longitudinally Shaped Bunch Trains 160
 
  • S.J. Coleman, D.T. Abell, C.C. Hall
    RadiaSoft LLC, Boulder, Colorado, USA
  • R. Kapadia
    University of Southern California, Los Angeles, California, USA
  • S.S. Karkare
    Arizona State University, Tempe, USA
  • S.Y. Kim, P. Piot, J.F. Power
    ANL, Lemont, Illinois, USA
 
  Funding: This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of High Energy Physics under Award Number DOE DE-SC0021681
Com­pact, high-gra­di­ent struc­ture wake­field ac­cel­er­a­tors can op­er­ate at im­proved ef­fi­ciency using shaped elec­tron beams, such as a high trans­former ratio beam shape, to drive the wakes. These shapes have gen­er­ally come from a pho­to­cath­ode gun fol­lowed by a trans­verse mask to im­print a de­sired shape on the trans­verse dis­tri­b­u­tion, and then an emit­tance ex­changer (EEX) to con­vert that trans­verse shape into a lon­gi­tu­di­nal dis­tri­b­u­tion. This process dis­cards some large frac­tion of the beam, lim­it­ing wall-plug ef­fi­ciency as well as leav­ing a solid ob­ject in the path of the beam. In this paper, we pre­sent a pro­posed method of using in­te­grated pho­ton­ics struc­tures to con­trol the emis­sion pat­tern on the cath­ode sur­face. This trans­verse pat­tern is then con­verted into a lon­gi­tu­di­nal pat­tern at the end of an EEX. This re­moves the need for the mask, pre­serv­ing the total charge pro­duced at the cath­ode sur­face. We pre­sent sim­u­la­tions of an ex­per­i­men­tal set-up to demon­strate this con­cept at the Ar­gonne Wake­field Ac­cel­er­a­tor.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA50  
About • Received ※ 03 August 2022 — Revised ※ 05 August 2022 — Accepted ※ 26 August 2022 — Issue date ※ 03 October 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPA55 Facilitating Machine Learning Collaborations Between Labs, Universities, and Industry 164
 
  • J.P. Edelen, D.T. Abell, D.L. Bruhwiler, S.J. Coleman, N.M. Cook, A. Diaw, J.A. Einstein-Curtis, C.C. Hall, M.C. Kilpatrick, B. Nash, I.V. Pogorelov
    RadiaSoft LLC, Boulder, Colorado, USA
  • K.A. Brown
    BNL, Upton, New York, USA
  • S. Calder
    ORNL RAD, Oak Ridge, Tennessee, USA
  • A.L. Edelen, B.D. O’Shea, R.J. Roussel
    SLAC, Menlo Park, California, USA
  • C.M. Hoffmann
    ORNL, Oak Ridge, Tennessee, USA
  • E.-C. Huang
    LANL, Los Alamos, New Mexico, USA
  • P. Piot
    Northern Illinois University, DeKalb, Illinois, USA
  • C. Tennant
    JLab, Newport News, Virginia, USA
 
  It is clear from nu­mer­ous re­cent com­mu­nity re­ports, pa­pers, and pro­pos­als that ma­chine learn­ing is of tremen­dous in­ter­est for par­ti­cle ac­cel­er­a­tor ap­pli­ca­tions. The quickly evolv­ing land­scape con­tin­ues to grow in both the breadth and depth of ap­pli­ca­tions in­clud­ing physics mod­el­ing, anom­aly de­tec­tion, con­trols, di­ag­nos­tics, and analy­sis. Con­se­quently, lab­o­ra­to­ries, uni­ver­si­ties, and com­pa­nies across the globe have es­tab­lished ded­i­cated ma­chine learn­ing (ML) and data-sci­ence ef­forts aim­ing to make use of these new state-of-the-art tools. The cur­rent fund­ing en­vi­ron­ment in the U.S. is struc­tured in a way that sup­ports spe­cific ap­pli­ca­tion spaces rather than larger col­lab­o­ra­tion on com­mu­nity soft­ware. Here, we dis­cuss the ex­ist­ing col­lab­o­ra­tion bot­tle­necks and how a shift in the fund­ing en­vi­ron­ment, and how we de­velop col­lab­o­ra­tive tools, can help fuel the next wave of ML ad­vance­ments for par­ti­cle ac­cel­er­a­tors.  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA55  
About • Received ※ 10 August 2022 — Revised ※ 11 August 2022 — Accepted ※ 22 August 2022 — Issue date ※ 01 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPA57 Online Models for X-Ray Beamlines 170
 
  • B. Nash, D.T. Abell, M.V. Keilman, P. Moeller, I.V. Pogorelov
    RadiaSoft LLC, Boulder, Colorado, USA
  • Y. Du, A. Giles, J. Lynch, T. Morris, M.S. Rakitin, A. Walter
    BNL, Upton, New York, USA
  • N.B. Goldring
    STATE33 Inc., Portland, Oregon, USA
 
  Funding: This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Science, under Award Number DE-SC0020593
X-ray beam­lines trans­port syn­chro­tron ra­di­a­tion from the mag­netic source to the sam­ple at a syn­chro­tron light source. Align­ment of el­e­ments such as mir­rors and grat­ings are often done man­u­ally and can be quite time con­sum­ing. The use of pho­ton beam mod­els dur­ing op­er­a­tions is not com­mon in the same way that they are used to great ben­e­fit for par­ti­cle beams in ac­cel­er­a­tors. Lin­ear and non-lin­ear op­tics in­clud­ing the ef­fects of co­her­ence may be com­puted from source prop­er­ties and aug­mented with mea­sure­ments. In col­lab­o­ra­tion with NSLS-II, we are de­vel­op­ing soft­ware tools and meth­ods to in­clude the model of the x-ray beam as it passes on its way to the sam­ple. We are in­te­grat­ing the Blue-Sky beam­line con­trol toolkit with the Sirepo in­ter­face to sev­eral x-ray op­tics codes. Fur­ther, we are de­vel­op­ing a sim­pli­fied lin­ear op­tics ap­proach based on a Gauss-Schell model and lin­ear canon­i­cal trans­forms as well as de­vel­op­ing Ma­chine Learn­ing mod­els for use di­rectly from di­ag­nos­tics data. We pre­sent progress on ap­ply­ing these ideas on NSLS-II beam­lines and give a fu­ture out­look on this rather large and open do­main for tech­no­log­i­cal de­vel­op­ment.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA57  
About • Received ※ 27 July 2022 — Revised ※ 02 August 2022 — Accepted ※ 07 August 2022 — Issue date ※ 11 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPA59 Prediction of Gaseous Breakdown for Plasma Cleaning of RF Cavities 174
 
  • S.A. Ahmed
    Ansys, Inc., Canonsburg, USA
 
  The quest for a high ac­cel­er­at­ing gra­di­ent in su­per­con­duct­ing radio fre­quency cav­ity at­tracted sci­en­tists to adopt the plasma clean­ing tech­nol­ogy. Gen­er­at­ing an ef­fi­cient plasma in­side a com­plex cav­ity struc­ture for a de­sired fre­quency, gas types, and pres­sure for a given tem­per­a­ture is a chal­lenge. The onset of dis­charge can be ob­tained from the well-known Paschen curve. Set­ting up an ex­per­i­ment is ex­pen­sive and time-con­sum­ing, which may lead to a sig­nif­i­cant delay in the pro­ject. A high-fi­delity com­puter sim­u­la­tion, mod­el­ing an ar­bi­trary geom­e­try and track­ing the Paschen curve in a com­plex elec­tro­mag­netic en­vi­ron­ment is there­fore nec­es­sary. Ansys HFSS through its Fi­nite El­e­ment Mesh (FEM) for the full-wave EM sim­u­la­tions com­bined with the elec­tron im­pact ion­iza­tion of gases en­ables the suc­cess­ful pre­dic­tion of plasma break­down for an ar­bi­trary con­fig­u­ra­tion for a wide fre­quency band and va­ri­ety of gases. A com­pre­hen­sive study will be demon­strated at the con­fer­ence.
The author like to thank Robert Chao for the valuable discussions and his efforts in developing this capability in the Ansys Electronics Desktop.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA59  
About • Received ※ 01 August 2022 — Revised ※ 03 August 2022 — Accepted ※ 06 August 2022 — Issue date ※ 19 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPA60 HFSS Enables Multipaction Analysis of High Power RF/Microwave Components 176
 
  • S.A. Ahmed
    Ansys, Inc., Canonsburg, USA
 
  The ra­diofre­quency (RF) com­po­nents in par­ti­cle ac­cel­er­a­tors op­er­ated under a vac­uum and dri­ven by high RF power may be prone to elec­tron mul­ti­paction ’ an RF trig­gered elec­tron res­o­nance phe­nom­e­non caus­ing mal­func­tion or com­plete break­down. There­fore, ex­plor­ing the de­sign chal­lenges of vac­uum RF win­dows, cav­i­ties, and other de­vices for the elec­tron mul­ti­paction be­comes nec­es­sary. Set­ting up an ex­per­i­ment to mit­i­gate the fail­ure of RF de­vices is ex­pen­sive and time-con­sum­ing, which may cause a sig­nif­i­cant delay in the pro­ject. There­fore, a high-fi­delity com­puter sim­u­la­tion mod­el­ing the ar­bi­trary geom­e­try and track­ing the par­ti­cles (elec­trons) in a com­plex elec­tro­mag­netic en­vi­ron­ment is de­sir­able. Ansys HFSS through Fi­nite El­e­ment Mesh (FEM) for the full-wave RF sim­u­la­tion com­bined with the par­ti­cle-in-cell (PIC) tech­nique for track­ing par­ti­cles in EM fields; en­ables the en­gi­neers/physi­cist suc­cess­ful pre­dic­tion of sys­tem fail­ure against the elec­tron mul­ti­paction. This paper will demon­strate the work­flow of the HFSS mul­ti­paction analy­sis.
The author like to thank Robert Chao for the valuable discussions and his efforts in developing this capability in the Ansys Electronics Desktop.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA60  
About • Received ※ 03 August 2022 — Revised ※ 13 August 2022 — Accepted ※ 26 August 2022 — Issue date ※ 06 October 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPA61 Modular Solid-State Switching and Arc Suppression for Vacuum Tube Bias Circuits 179
 
  • E.L. Atkinson, T.J. Houlahan, B.E. Jurczyk, R.A. Stubbers
    Starfire Industries LLC, Champaign, USA
 
  In this work, we pre­sent op­er­a­tional and per­for­mance data for a solid-state switch­ing cir­cuit that de­liv­ers pulsed power at up to 12 kV and 100 A. This cir­cuit, which is com­prised of a se­ries con­fig­u­ra­tion of IGBT-based sub­cir­cuits, is suit­able for dri­ving the high-power vac­uum-tube am­pli­fiers that are typ­i­cally used in RF ac­cel­er­a­tor sys­tems. Each sub­cir­cuit can switch up to 3 kV, and the sub­cir­cuits can be stacked in se­ries to ex­tend the over­all volt­age ca­pa­bil­i­ties of the switch. The cir­cuit is de­signed to pre­vent over­volt­ag­ing any sin­gle tran­sis­tor dur­ing switch­ing tran­sients or faults, re­gard­less of the num­ber of se­ries sub­cir­cuits. Fur­ther, the cir­cuit also in­cludes the ca­pa­bil­ity for rapid arc de­tec­tion and sup­pres­sion. Test­ing has shown ef­fec­tive switch­ing at up to 100 A at 12 kV and for pulse rep­e­ti­tion fre­quen­cies and du­ra­tions in the range of 1-200 Hz and 10-50 µs, re­spec­tively. Ad­di­tion­ally, the arc sup­pres­sion cir­cuitry has been shown to re­li­ably limit arcs at 8-12 kV with a quench time of <1 µs and with a total en­ergy of <0.2 J, min­i­miz­ing the grid ero­sion in the vac­uum-tube dur­ing an arc.  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA61  
About • Received ※ 01 August 2022 — Revised ※ 09 August 2022 — Accepted ※ 20 August 2022 — Issue date ※ 10 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPA62 High Quality Conformal Coatings on Accelerator Components via Novel Radial Magnetron with High-Power Impulse Magnetron Sputtering 182
 
  • W.M. Huber, I. Haehnlein, T.J. Houlahan, B.E. Jurczyk, A.S. Morrice, R.A. Stubbers
    Starfire Industries LLC, Champaign, USA
 
  Funding: This material is based upon work supported by the U.S. Department of Energy under Award Numbers DE-SC0019784 and DE-SC0020481.
In this work, we pre­sent two con­fig­u­ra­tions of a novel ra­dial mag­netron de­sign that are suit­able for coat­ing the com­plex inner sur­faces of a va­ri­ety of mod­ern par­ti­cle ac­cel­er­a­tor com­po­nents. These de­vices have been used in con­junc­tion with high-power im­pulse mag­netron sput­ter­ing (HiP­IMS) to de­posit cop­per and nio­bium films onto the inner sur­faces of bel­lows as­sem­blies, wave­guides, and SRF cav­i­ties. These films, with thick­nesses of up to 3 µm and 40 µm for nio­bium and cop­per, re­spec­tively, have been shown to be con­for­mal, ad­her­ent, and con­duc­tive. In the case of cop­per, the post-bake RRR val­ues of the re­sult­ing films are well within the range spec­i­fied for elec­tro­plat­ing of the LCLS-II bel­lows and CEBAF wave­guide as­sem­blies. In ad­di­tion to re­quir­ing no chem­i­cal pro­cess­ing be­yond a de­ter­gent rinse and sol­vent de­grease, this mag­netron de­sign ex­hibits over 80% tar­get ma­te­r­ial uti­liza­tion. Fur­ther, in the case of nio­bium, an en­hance­ment in RRR over that of the bulk (tar­get) ma­te­r­ial has been ob­served.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA62  
About • Received ※ 02 August 2022 — Revised ※ 05 August 2022 — Accepted ※ 09 August 2022 — Issue date ※ 21 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPA63 Multiphysics Simulation of the Thermal Response of a Nanofibrous Target in a High-Intensity Beam 185
 
  • W.J. Asztalos
    IIT, Chicago, Illinois, USA
  • S.K. Bidhar, F. Pellemoine
    Fermilab, Batavia, Illinois, USA
  • P. Rath
    IIT Bhubaneswar, Jatni, India
  • Y. Torun
    Illinois Institute of Technology, Chicago, Illlinois, USA
 
  Nanofi­brous struc­tures are of high in­ter­est to the fields of en­gi­neer­ing and ma­te­ri­als sci­ence, and in­ves­ti­ga­tion of their prop­er­ties as well as dis­cov­ery of novel ap­pli­ca­tions for them both con­sti­tute lively areas of re­search. A very promis­ing ap­pli­ca­tion of nanofiber mats lies in the field of ac­cel­er­a­tor tech­nol­ogy: beam tar­gets made from nanofiber mats offer a so­lu­tion to the prob­lem of ad­vanc­ing the "in­ten­sity fron­tier"–-the limit on the beam in­ten­si­ties that can be re­al­ized in fixed tar­get ex­per­i­ments and neu­trino pro­duc­tion fa­cil­i­ties. How­ever, test­ing has shown that the sur­viv­abil­ity of these nanofiber tar­gets de­pends strongly on their man­u­fac­tur­ing pa­ra­me­ters, such as the pack­ing den­sity of fibers. In this work, we will use mul­ti­physics sim­u­la­tions to per­form a ther­mal study on how nanofiber tar­gets react to high in­ten­sity beams, so that the de­pen­dency of the tar­gets’ life­time on their con­struc­tion pa­ra­me­ters can be bet­ter un­der­stood.  
poster icon Poster MOPA63 [3.656 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA63  
About • Received ※ 14 July 2022 — Revised ※ 02 August 2022 — Accepted ※ 04 August 2022 — Issue date ※ 25 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPA64 Circular Modes for Mitigating Space-Charge Effects and Enabling Flat Beams 189
 
  • O. Gilanliogullari
    IIT, Chicago, Illinois, USA
  • B. Mustaphapresenter
    ANL, Lemont, Illinois, USA
  • P. Snopok
    Illinois Institute of Technology, Chicago, Illlinois, USA
 
  Funding: This work was supported by the U.S. Department of Energy, under Contract No. DE-AC02-06CH11357
Flat beams are pre­ferred in high-in­ten­sity ac­cel­er­a­tors and high-en­ergy col­lid­ers due to one of the trans­verse plane emit­tances being smaller, which en­hances lu­mi­nos­ity and beam bright­ness. How­ever, flat beams are dev­as­tat­ing at low en­er­gies due to space charge forces which are sig­nif­i­cantly en­hanced in one plane. The same is true, al­though to a lesser de­gree, for non-sym­met­ric el­lip­ti­cal beams. In order to mit­i­gate this ef­fect, cir­cu­lar mode beam op­tics can be used. In this paper, we show that cir­cu­lar mode beams di­lute space charge ef­fects at lower en­er­gies, and can be trans­formed to flat beams later on.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA64  
About • Received ※ 09 August 2022 — Revised ※ 11 August 2022 — Accepted ※ 12 August 2022 — Issue date ※ 23 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPA66 Hadron Monitor Calibration System for NuMI 193
 
  • N.L. Muldrow
    IIT, Chicago, Illinois, USA
  • P. Snopok
    Illinois Institute of Technology, Chicago, Illlinois, USA
  • K. Yonehara
    Fermilab, Batavia, Illinois, USA
 
  Funding: CAST Fellowship
NuMI (Neu­tri­nos at Main In­jec­tor) beam­line at Fermi Na­tional Ac­cel­er­a­tor Lab­o­ra­tory pro­vides neu­tri­nos to var­i­ous neu­trino ex­per­i­ments. The hadron mon­i­tor con­sist­ing of a 5 by 5 array of ion­iza­tion cham­bers is part of the di­ag­nos­tics for the beam­line. In order to cal­i­brate the hadron mon­i­tor, a gamma source is needed. We pre­sent the sta­tus and progress of the de­vel­op­ment of the cal­i­bra­tion sys­tem for the hadron mon­i­tor. The sys­tem based on Rasp­berry Pi con­trolled CNC sys­tem, mo­tors, and po­si­tion sen­sors would allow us to place the gamma source pre­cisely to cal­i­brate the sig­nal gain of in­di­vid­ual pix­els. The ul­ti­mate out­come of the study is a pro­to­type of the cal­i­bra­tion sys­tem.
 
poster icon Poster MOPA66 [2.300 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA66  
About • Received ※ 18 July 2022 — Accepted ※ 12 August 2022 — Issue date ※ 05 September 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPA67 Examining the Effects of Oxygen Doping on SRF Cavity Performance 196
 
  • H. Hu, Y.K. Kim
    University of Chicago, Chicago, Illinois, USA
  • D. Bafia
    Fermilab, Batavia, Illinois, USA
 
  Su­per­con­duct­ing ra­diofre­quency (SRF) cav­i­ties are res­onators with ex­tremely low sur­face re­sis­tance that en­able ac­cel­er­at­ing cav­i­ties to have ex­tremely high qual­ity fac­tors (Q0). High (Q0) de­creases the cap­i­tal re­quired to keep ac­cel­er­a­tors cold by re­duc­ing power loss. The per­for­mance of SRF cav­i­ties is largely gov­erned by the sur­face com­po­si­tion of the first 100 nm of the cav­ity sur­face. Im­pu­ri­ties such as oxy­gen and ni­tro­gen have been ob­served to yield high Q0, but their pre­cise roles are still being stud­ied. Here, we com­pare the per­for­mance of cav­i­ties doped with ni­tro­gen and oxy­gen in terms of fun­da­men­tal ma­te­r­ial prop­er­ties to un­der­stand how these im­pu­ri­ties af­fect per­for­mance. This en­ables us to have fur­ther in­sight into the un­der­ly­ing mech­a­nisms that en­able these sur­face treat­ments to yield high Q0 per­for­mance.  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA67  
About • Received ※ 02 August 2022 — Accepted ※ 05 August 2022 — Issue date ※ 03 October 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPA69 Adjoint Optimization Applied to Flat to Round Transformers 199
 
  • T.M. Antonsen, B.L. Beaudoin, S. Bernal, L. Dovlatyan, I. Haber, P.G. O’Shea, D.F. Sutter
    UMD, College Park, Maryland, USA
 
  Funding: This work was supported by DOE-HEP Awards No. DESC0010301 and DESC0022009
We pre­sent the nu­mer­i­cal op­ti­miza­tion, using ad­joint tech­niques, of Flat-to-Round (FTR) trans­form­ers op­er­at­ing in the strong self-field limit. FTRs trans­form an un­mag­ne­tized beam that has a high as­pect ratio, el­lip­ti­cal spa­tial cross sec­tion, to a round beam in a so­le­noidal mag­netic field. In its sim­plest form the flat to round con­ver­sion is ac­com­plished with a triplet of quadrupoles, and a so­le­noid. FTR trans­form­ers have mul­ti­ple ap­pli­ca­tions in beam physics re­search, in­clud­ing ma­nip­u­lat­ing elec­tron beams to cool co-prop­a­gat­ing hadron beams. Pa­ra­me­ters that can be var­ied to op­ti­mize the FTR con­ver­sion are the po­si­tions and strengths of the four mag­net el­e­ments, in­clud­ing the ori­en­ta­tions and axial pro­files of the quadrupoles and the axial pro­file and strength of the so­le­noid’s mag­netic field. The ad­joint method we em­ploy [1] al­lows for op­ti­miza­tion of the lat­tice with a min­i­mum com­pu­ta­tional ef­fort in­clud­ing self-fields. The pre­sent model is based on a mo­ment de­scrip­tion of the beam. How­ever, the gen­er­al­iza­tion to a par­ti­cle de­scrip­tion will be pre­sented. The op­ti­mized de­signs pre­sented here will be tested in ex­per­i­ments under con­struc­tion at the Uni­ver­sity of Mary­land.
[1] Optimization of Flat to Round Transformers with self-fields using adjoint techniques, L. Dovlatyan, B. Beaudoin, S. Bernal, I. Haber, D. Sutter and TMA, PhysRevAccelBeams.25.044002 (2022).
 
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA69  
About • Received ※ 03 August 2022 — Revised ※ 25 September 2022 — Accepted ※ 05 December 2022 — Issue date ※ 05 December 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPA70 Film Dosimetry Characterization of the Research Linac at the University of Maryland 203
 
  • A.S. Johnson, L.T. Gilde, M.K. Hottinger, T.W. Koeth
    UMD, College Park, Maryland, USA
 
  A heav­ily mod­i­fied Var­ian linac was in­stalled as part of the Uni­ver­sity of Mary­land Ra­di­a­tion Fa­cil­i­ties in the early 1980s. The elec­tron linac was ini­tially used for ma­te­ri­als test­ing and pulsed ra­di­ol­y­sis. Over­time, di­ag­nos­tics such as a spec­trom­e­ter mag­net and scin­til­la­tor screens have been re­moved, lim­it­ing the abil­ity to de­scribe the elec­tron beam. The beam­line is cur­rently con­fig­ured with a thin ti­ta­nium win­dow to allow the elec­trons to es­cape the vac­uum re­gion and in­ter­act with sam­ples in air. A cal­i­brated film dosime­try sys­tem was used to char­ac­ter­ize the trans­verse beam di­men­sions and uni­for­mity in air. The re­sults of these ex­per­i­men­tal mea­sure­ments will be de­scribed in this paper.  
poster icon Poster MOPA70 [3.423 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA70  
About • Received ※ 27 July 2022 — Revised ※ 08 August 2022 — Accepted ※ 11 August 2022 — Issue date ※ 20 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPA72 Preliminary Tests and Beam Dynamics Simulations of a Straight-Merger Beamline 206
 
  • A.A. Al Marzouk, P. Piot, T. Xu
    Northern Illinois University, DeKalb, Illinois, USA
  • S.V. Benson, K.E. Deitrick, J. Guo, A. Hutton, G.-T. Park, S. Wang
    JLab, Newport News, Virginia, USA
  • D.S. Doran, G. Ha, P. Piot, J.G. Power, C. Whiteford, E.E. Wisniewski
    ANL, Lemont, Illinois, USA
  • C.E. Mitchell, J. Qiang, R.D. Ryne
    LBNL, Berkeley, California, USA
 
  Funding: NSF award PHY-1549132 to Cornell University and NIU, U.S. DOE contract DE-AC02-06CH11357 with ANL and DE-AC05-06OR23177 with JLAB.
Beam­lines ca­pa­ble of merg­ing beams with dif­fer­ent en­er­gies are crit­i­cal to many ap­pli­ca­tions re­lated to ad­vanced ac­cel­er­a­tor con­cepts and en­ergy-re­cov­ery linacs (ERLs). In an ERL, a low-en­ergy "fresh" bright bunch is gen­er­ally in­jected into a su­per­con­duct­ing linac for ac­cel­er­a­tion using the fields es­tab­lished by a de­cel­er­ated "spent" beam trav­el­ing on the same axis. A straight-merger sys­tem com­posed of a se­lect­ing cav­ity with a su­per­im­posed di­pole mag­net was pro­posed and re­cently test at AWA. This paper re­ports on the ex­per­i­men­tal re­sults ob­tained so far along with de­tailed beam dy­nam­ics in­ves­ti­ga­tions of the merger con­cept and its abil­ity to con­serve the beam bright­ness as­so­ci­ated with the fresh bunch.
 
poster icon Poster MOPA72 [1.659 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA72  
About • Received ※ 11 August 2022 — Accepted ※ 13 August 2022 — Issue date ※ 02 October 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPA74 Design of a W-Band Corrugated Waveguide for Structure Wakefield Acceleration 210
 
  • B. Leung, X. Lu, C.L. Phillips, P. Piot
    Northern Illinois University, DeKalb, Illinois, USA
  • D.S. Doran, X. Lu, P. Piot, J.G. Power
    ANL, Lemont, Illinois, USA
 
  Cur­rent re­search on struc­ture wake­field ac­cel­er­a­tion aims to de­velop ra­dio-fre­quency struc­tures that can pro­duce high gra­di­ents, with work in the sub-ter­a­hertz regime being par­tic­u­larly in­ter­est­ing be­cause of the po­ten­tial to cre­ate more com­pact and eco­nom­i­cal ac­cel­er­a­tors. Metal­lic cor­ru­gated wave­guides at sub-ter­a­hertz fre­quen­cies are one such struc­ture. We have de­signed a W-band cor­ru­gated wave­guide for a collinear wake­field ac­cel­er­a­tion ex­per­i­ment at the Ar­gonne Wake­field Ac­cel­er­a­tor (AWA). Using the CST Stu­dio Suite, we have op­ti­mized the struc­ture for the max­i­mum achiev­able gra­di­ent in the wake­field from a nom­i­nal AWA elec­tron bunch at 65 MeV. Sim­u­la­tion re­sults from dif­fer­ent solvers of CST were bench­marked with each other, with an­a­lyt­i­cal mod­els, and with an­other sim­u­la­tion code, ECHO. We are in­ves­ti­gat­ing the me­chan­i­cal de­sign, suit­able fab­ri­ca­tion tech­nolo­gies, and the pos­si­bil­ity to apply ad­vanced bunch shap­ing tech­niques to im­prove the struc­ture per­for­mance.  
poster icon Poster MOPA74 [1.518 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA74  
About • Received ※ 30 July 2022 — Revised ※ 03 August 2022 — Accepted ※ 07 August 2022 — Issue date ※ 26 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPA75 Machine Learning for Slow Spill Regulation in the Fermilab Delivery Ring for Mu2e 214
 
  • A. Narayanan
    Northern Illinois University, DeKalb, Illinois, USA
  • J.M.S. Arnold, M.R. Austin, J.R. Berlioz, P.M. Hanlet, K.J. Hazelwood, M.A. Ibrahim, V.P. Nagaslaev, D.J. Nicklaus, G. Pradhan, P.S. Prieto, A.L. Saewert, B.A. Schupbach, K. Seiya, R.M. Thurman-Keup, N.V. Tran
    Fermilab, Batavia, Illinois, USA
  • J. Jiang, H. Liu, S. Memik, R. Shi, M. Thieme, D. Ulusel
    Northwestern University, Evanston, Illinois, USA
 
  Funding: Work done partly (READS) collaboration at Fermilab (Grant Award No. LAB 20-2261). Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-07CH11359.
A third-in­te­ger res­o­nant slow ex­trac­tion sys­tem is being de­vel­oped for the Fer­mi­lab’s De­liv­ery Ring to de­liver pro­tons to the Mu2e ex­per­i­ment. Dur­ing a slow ex­trac­tion process, the beam on tar­get is li­able to ex­pe­ri­ence small in­ten­sity vari­a­tions due to many fac­tors. Owing to the ex­per­i­ment’s strict re­quire­ments in the qual­ity of the spill, a Spill Reg­u­la­tion Sys­tem (SRS) is cur­rently under de­sign. The SRS pri­mar­ily con­sists of three com­po­nents - slow reg­u­la­tion, fast reg­u­la­tion, and har­monic con­tent tracker. In this pre­sen­ta­tion, we shall pre­sent the in­ves­ti­ga­tions of using Ma­chine Learn­ing (ML) in the fast reg­u­la­tion sys­tem, in­clud­ing fur­ther op­ti­miza­tions of PID con­troller gains for the fast reg­u­la­tion, prospects of an ML agent com­pletely re­plac­ing the PID con­troller using su­per­vised learn­ing schemes such as Long Short-Term Mem­ory (LSTM) and Gated Re­cur­rent Unit (GRU) ML mod­els, the sim­u­lated im­pact and lim­i­ta­tion of ma­chine re­sponse char­ac­ter­is­tics on the ef­fec­tive­ness of both PID and ML reg­u­la­tion of the spill. We also pre­sent here nascent re­sults of Re­in­force­ment Learn­ing ef­forts, in­clud­ing con­tin­u­ous-ac­tion soft ac­tor-critic meth­ods, to reg­u­late the spill rate.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA75  
About • Received ※ 03 August 2022 — Revised ※ 08 August 2022 — Accepted ※ 18 September 2022 — Issue date ※ 05 October 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPA76 Wakefield Modeling in Sub-THz Dielectric-Lined Waveguides 218
 
  • C.L. Phillips, B. Leung, X. Lu, P. Piot
    Northern Illinois University, DeKalb, Illinois, USA
 
  Di­elec­tric-lined wave­guides have been ex­ten­sively stud­ied to po­ten­tially sup­port high-gra­di­ent ac­cel­er­a­tion in beam-dri­ven di­elec­tric wake­field ac­cel­er­a­tion (DWFA) and for beam ma­nip­u­la­tions. In this paper, we in­ves­ti­gate the wake­field gen­er­ated by a rel­a­tivis­tic bunch pass­ing through a di­elec­tric wave­guide with dif­fer­ent trans­verse sec­tions. We specif­i­cally con­sider the case of a struc­ture con­sist­ing of two di­elec­tric slabs, along with rec­tan­gu­lar and square struc­tures. Nu­mer­i­cal sim­u­la­tions per­formed with the fine-dif­fer­ence time-do­main of the WarpX pro­gram re­veal some in­ter­est­ing fea­tures of the trans­verse wake and a pos­si­ble ex­per­i­ment at the Ar­gonne Wake­field Ac­cel­er­a­tor (AWA) is pro­posed.  
poster icon Poster MOPA76 [1.294 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA76  
About • Received ※ 12 August 2022 — Accepted ※ 13 August 2022 — Issue date ※ 12 September 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPA78 Temporally-Shaped Ultraviolet Pulses for Tailored Bunch Generation at Argonne Wakefield Accelerator 222
 
  • T. Xu, P. Piot
    Northern Illinois University, DeKalb, Illinois, USA
  • S. Carbajo
    UCLA, Los Angeles, California, USA
  • S. Carbajo, R.A. Lemons
    SLAC, Menlo Park, California, USA
  • P. Piot
    ANL, Lemont, Illinois, USA
 
  Pho­to­cath­ode laser shap­ing is an ap­peal­ing tech­nique to gen­er­ate tai­lored elec­tron bunches due to its ver­sa­til­ity and sim­plic­ity. Most pho­to­cath­odes re­quire pho­ton en­er­gies ex­ceed­ing the nom­i­nal pho­ton en­ergy pro­duced by the las­ing medium. A com­mon setup con­sists of an in­frared (IR) laser sys­tem with non­lin­ear fre­quency con­ver­sion to the ul­tra­vi­o­let (UV). In this work, we pre­sent the nu­mer­i­cal mod­el­ing of a tem­po­ral shap­ing tech­nique ca­pa­ble of pro­duc­ing elec­tron bunches with lin­early-ramped cur­rent pro­files for ap­pli­ca­tion to collinear wake­field ac­cel­er­a­tors. Specif­i­cally, we show that con­trol­ling higher-or­der dis­per­sion terms as­so­ci­ated with the IR pulse pro­vides some con­trol over the UV tem­po­ral shape. Beam dy­nam­ics sim­u­la­tion of an elec­tron-bunch shap­ing ex­per­i­ment at the Ar­gonne Wake­field Ac­cel­er­a­tor is pre­sented.  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA78  
About • Received ※ 01 August 2022 — Revised ※ 06 August 2022 — Accepted ※ 09 August 2022 — Issue date ※ 31 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPA79 Studying the Emission Characteristics of Field Emission Cathodes with Various Geometries 226
 
  • M.R. Howard, S.M. Lidia
    FRIB, East Lansing, Michigan, USA
  • J.E. Coleman
    LANL, Los Alamos, New Mexico, USA
 
  Funding: Work supported by the NNSA of US DOE under contract 89233218CNA000001 and partially supported by the US DOE under Cooperative Agreement award number DE-SC0018362 and Michigan State University.
The cath­ode test stand (CTS) at LANL is de­signed to hold off volt­ages of up to 500kV and can sup­ply pulse du­ra­tions up to 2.6 μs. Using this test stand, we are able to test both field emis­sion and pho­to­cath­odes with dif­fer­ent geome­tries and ma­te­ri­als at var­i­ous pulse lengths and PFN volt­ages. Cur­rently, the test stand is used to eval­u­ate field emis­sion using a vel­vet cath­ode over var­i­ous pulse lengths. The CTS em­ploys var­i­ous di­ag­nos­tic tools, in­clud­ing E-dots, B-dots, and a scin­til­la­tor cou­pled with a pep­per­pot mask in order to mea­sure the ex­tracted volt­age, cur­rent, beam dis­tri­b­u­tion, and trans­verse emit­tance. Xenos [1] has been used to cre­ate and sim­u­late diode geome­tries that per­mits study to op­ti­mize var­i­ous beam pa­ra­me­ters. These geome­tries in­clude chang­ing the size and re­cess of the cath­ode as well as im­ple­ment­ing a Pierce geom­e­try. Here, we will dis­cuss com­par­isons for var­i­ous sim­u­lated cath­odes and how changes in geom­e­try im­pact given beam pa­ra­me­ters.
[1] See https://www.fieldp.com/xenos.html for information about the Xenos software.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA79  
About • Received ※ 02 August 2022 — Revised ※ 10 August 2022 — Accepted ※ 11 August 2022 — Issue date ※ 30 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPA80 Design Study for Non-Intercepting Gas-Sheet Profile Monitor at FRIB 229
 
  • A. Lokey, S.M. Lidia
    FRIB, East Lansing, Michigan, USA
 
  Funding: Work supported by the US Department of Energy, Office of Science, High Energy Physics under Cooperative Agreement award number DE-SC0018362 and Michigan State University.
Non-in­va­sive pro­file mon­i­tors offer a sig­nif­i­cant ad­van­tage for con­tin­u­ous, on­line mon­i­tor­ing of trans­verse beam pro­file and tun­ing of beam pa­ra­me­ters dur­ing op­er­a­tion. This is due to both the non-de­struc­tive na­ture of the mea­sure­ment and the unique fea­ture that some mon­i­tors have of being able to de­ter­mine both trans­verse pro­files in one mea­sure­ment [1]. One method of in­ter­est for mak­ing this mea­sure­ment is the use of a thin gas cur­tain, which in­ter­cepts the beam and gen­er­ates both ions and pho­tons, which can be col­lected at a de­tec­tor sit­u­ated per­pen­dic­u­lar to the gas sheet. This study will in­ves­ti­gate the re­quire­ments for de­vel­op­ing such a mea­sure­ment de­vice for use at the Fa­cil­ity for Rare Iso­tope Beams (FRIB), which pro­duces high-in­ten­sity, multi charge state, heavy ion beams. In­cluded will be an ini­tial de­sign spec­i­fi­ca­tions and an analy­sis of al­ter­na­tives be­tween ion­iza­tion and beam-in­duced flu­o­res­cence mea­sure­ment tech­niques for ac­quir­ing sig­nal from the gas sheet.
[1] I. Yamada, M. Wada, K. Moriya, et al, "High-intensity beam profile measurement using a gas sheet monitor by beam induced fluorescence detection," Phys. Rev. Accel. Beams 24, 042801, 2021.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA80  
About • Received ※ 03 August 2022 — Revised ※ 06 August 2022 — Accepted ※ 06 September 2022 — Issue date ※ 07 October 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPA81 Study of Nonlinear Dynamics in the 4-D Hénon Map Using the Square Matrix Method and Iterative Methods 232
 
  • K.J. Anderson, Y. Hao
    FRIB, East Lansing, Michigan, USA
  • L.H. Yu
    BNL, Upton, New York, USA
 
  Funding: Accelerator Stewardship program under award number DE-SC0019403 US Department of Energy, Office of Science, High Energy Physics under award number DE-SC0018362 and Michigan State University
The Hénon Map rep­re­sents a lin­ear lat­tice with a sin­gle sex­tu­pole kick. This map has been ex­ten­sively stud­ied due to its chaotic be­hav­ior. The case for the two di­men­sional phase space has re­cently been re­vis­ited using ideas from KAM the­ory to cre­ate an it­er­a­tive process that trans­forms non­lin­ear per­turbed tra­jec­to­ries into rigid ro­ta­tions*. The con­ver­gence of this method re­lates to the res­o­nance struc­ture and can be used as an in­di­ca­tor of the dy­namic aper­ture. The stud­ies of this method have been ex­tended to the four di­men­sional phase space case which in­tro­duces cou­pling be­tween the trans­verse co­or­di­nates.
*Hao, Y., Anderson, K., & Yu, L. H. (2021, August). Revisit of Nonlinear Dynamics in Hénon Map Using Square Matrix Method. https://doi.org/10.18429/JACoW-IPAC2021-THPAB016
 
poster icon Poster MOPA81 [3.103 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA81  
About • Received ※ 19 July 2022 — Revised ※ 04 August 2022 — Accepted ※ 15 August 2022 — Issue date ※ 26 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPA82 Space Charge Driven Third Order Resonance at AGS Injection 236
 
  • M.A. Balcewicz, Y. Hao
    FRIB, East Lansing, Michigan, USA
  • Y. Hao, H. Huang, C. Liu, K. Zeno
    BNL, Upton, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy
Res­o­nance line cross­ings at sig­nif­i­cant space charge tune shifts can ex­hibit var­i­ous phe­nom­ena due to pe­ri­odic res­o­nance cross­ing from syn­chro­tron mo­tion* and man­i­fests as halo gen­er­a­tion and bunch short­en­ing along with the more mun­dane emit­tance growth and beam loss. An in­jec­tion ex­per­i­ment is con­ducted at the AGS using the fast wall cur­rent mon­i­tor and elec­tron col­lect­ing Ion­iza­tion Pro­file Mon­i­tor (eIPM) to probe third order res­o­nances to bet­ter char­ac­ter­ize the res­o­nance cross­ing over a 4 ms time scale. This ex­per­i­ment shows some agree­ment with pre­vi­ous ex­per­i­ments, save for lack of bunch short­en­ing, pos­si­bly due to rel­a­tive res­o­nance strength.
* G. Franchetti et al. PRSTAB 13, 114203. 2010
 
poster icon Poster MOPA82 [1.924 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA82  
About • Received ※ 02 August 2022 — Revised ※ 09 August 2022 — Accepted ※ 19 August 2022 — Issue date ※ 24 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPA83 Automation of Superconducting Cavity and Superconducting Magnet Operation for FRIB 239
 
  • W. Chang, Y. Choi, X.-J. Du, W. Hartung, S.H. Kim, T. Konomi, S.R. Kunjir, H. Nguyen, J.T. Popielarski, K. Saito, T. Xu, S. Zhao
    FRIB, East Lansing, Michigan, USA
 
  The su­per­con­duct­ing (SC) dri­ver linac for the Fa­cil­ity for Rare Iso­tope Beams (FRIB) is a heavy-ion ac­cel­er­a­tor that ac­cel­er­ate ions to 200 MeV per nu­cleon. The linac has 46 cry­omod­ules that con­tain 324 SC cav­i­ties and 69 SC so­le­noid pack­ages. For linac op­er­a­tion with high avail­abil­ity and high re­li­a­bil­ity, au­toma­tion is es­sen­tial for such tasks as fast de­vice turn-on/off, fast re­cov­ery from trips, and real-time mon­i­tor­ing of op­er­a­tional per­for­mance. We have im­ple­mented sev­eral au­toma­tion al­go­rithms, in­clud­ing one-but­ton turn-on/off of SC cav­i­ties and SC mag­nets; au­to­mated de­gauss­ing of SC so­le­noids; mit­i­ga­tion of field emis­sion-in­duced mul­ti­pact­ing dur­ing re­cov­ery from cav­ity trips; and real-time mon­i­tor­ing of the cav­ity field level cal­i­bra­tion. The de­sign, de­vel­op­ment, and op­er­at­ing ex­pe­ri­ence with au­toma­tion will be pre­sented.  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA83  
About • Received ※ 02 August 2022 — Revised ※ 03 August 2022 — Accepted ※ 06 August 2022 — Issue date ※ 26 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPA84 Superconducting Cavity Commissioning for the FRIB Linac 242
 
  • W. Chang, W. Hartung, S.H. Kim, T. Konomi, S.R. Kunjir, J.T. Popielarski, K. Saito, T. Xu, S. Zhao
    FRIB, East Lansing, Michigan, USA
 
  The su­per­con­duct­ing dri­ver linac for the Fa­cil­ity for Rare Iso­tope Beams (FRIB) is a heavy ion ac­cel­er­a­tor that has 46 cry­omod­ules with 324 su­per­con­duct­ing (SC) cav­i­ties that ac­cel­er­ate ions to 200 MeV per nu­cleon. Linac com­mis­sion­ing was done in mul­ti­ple phases, in par­al­lel with tech­ni­cal in­stal­la­tion. Ion beam have now been ac­cel­er­ated to the de­sign en­ergy through the full linac; rare iso­topes were first pro­duced in De­cem­ber 2021; and the first user ex­per­i­ment was com­pleted in May 2022. All cry­omod­ules were suc­cess­fully com­mis­sioned. Cry­omod­ule com­mis­sion­ing in­cluded es­tab­lish­ing the de­sired cav­ity fields, mea­sur­ing field emis­sion X-rays, op­ti­miz­ing the tuner con­trol loops, mea­sur­ing the cav­ity dy­namic heat load, and con­firm­ing the low-level RF con­trol (am­pli­tude and phase sta­bil­ity). Re­sults on cry­omod­ule com­mis­sion­ing and cry­omod­ule per­for­mance will be pre­sented.  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA84  
About • Received ※ 13 July 2022 — Revised ※ 02 August 2022 — Accepted ※ 13 August 2022 — Issue date ※ 05 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPA85 Design of a 185.7 MHz Superconducting RF Photoinjector Quarter-Wave Resonator for the LCLS-II-HE Low Emittance Injector 245
 
  • S.H. Kim, W. Hartung, T. Konomi, S.J. Miller, M.S. Patil, J.T. Popielarski, K. Saito, T. Xu, T. Xu
    FRIB, East Lansing, Michigan, USA
  • C. Adolphsen, L. Ge, F. Ji, J.W. Lewellen, L. Xiao
    SLAC, Menlo Park, California, USA
  • M.P. Kelly, T.B. Petersen, P. Piot
    ANL, Lemont, Illinois, USA
  • P. Piot
    Northern Illinois University, DeKalb, Illinois, USA
 
  Funding: Work supported by the U.S. Department of Energy Contract DE-AC02-76SF00515.
A 185.7 MHz su­per­con­duct­ing quar­ter-wave res­onator (QWR) was de­signed for the low emit­tance in­jec­tor of the Linac Co­her­ent Light Source high en­ergy up­grade (LCLS-II-HE). The cav­ity was de­signed to min­i­mize the risk of cath­ode ef­fi­ciency degra­da­tion due to mul­ti­pact­ing or field emis­sion and to op­er­ate with a high RF elec­tric field at the cath­ode for low elec­tron-beam emit­tance. Cav­ity de­sign fea­tures in­clude: (1) shap­ing of the cav­ity wall to re­duce the strength of the low-field coax­ial mul­ti­pact­ing bar­rier; (2) four ports for elec­trop­o­l­ish­ing and high-pres­sure water rins­ing; and (3) a fun­da­men­tal power cou­pler (FPC) port lo­cated away from the ac­cel­er­at­ing gap. The de­sign is ori­ented to­ward min­i­miz­ing the risk of par­tic­u­late con­t­a­m­i­na­tion and avoid harm­ful di­pole com­po­nents in the RF field. The ANL 162 MHz FPC de­sign for PIP-II is being adapted for the gun cav­ity. We will pre­sent the RF de­sign of the cav­ity in­te­grated with the FPC.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA85  
About • Received ※ 03 August 2022 — Revised ※ 09 August 2022 — Accepted ※ 11 August 2022 — Issue date ※ 30 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPA86 Conditioning of Low-Field Multipacting Barriers in Superconducting Quarter-Wave Resonators 249
 
  • S.H. Kim, W. Chang, W. Hartung, J.T. Popielarski, T. Xu
    FRIB, East Lansing, Michigan, USA
 
  Funding: This is based upon work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661, the State of Michigan and Michigan State University.
Mul­ti­pact­ing (MP) bar­ri­ers are typ­i­cally ob­served at very low RF am­pli­tude, at a field 2 to 3 or­ders of mag­ni­tude below the op­er­at­ing gra­di­ent, in low-fre­quency (<~100 MHz), quar­ter-wave res­onators (QWRs). Such bar­ri­ers may be trou­ble­some, as RF con­di­tion­ing with a fun­da­men­tal power cou­pler (FPC) of typ­i­cal cou­pling strength (ex­ter­nal Q = 106 to 107) is gen­er­ally dif­fi­cult. For the FRIB \beta = 0.085 QWRs (80.5 MHz), the low bar­rier is ob­served at an ac­cel­er­at­ing gra­di­ent (Eacc) of ~10 kV/m; the op­er­at­ing Eacc is 5.6 MV/m. The­o­ret­i­cal and sim­u­la­tion stud­ies sug­gested that the con­di­tion­ing is dif­fi­cult due to the rel­a­tively low RF power dis­si­pated into mul­ti­pact­ing rather than being a prob­lem of the low bar­rier being stronger than other bar­ri­ers. We de­vel­oped a sin­gle-stub coax­ial FPC match­ing el­e­ment for ex­ter­nal ad­just­ment of the ex­ter­nal Q by one order of mag­ni­tude. The match­ing el­e­ment pro­vided a sig­nif­i­cant re­duc­tion in the time to con­di­tion the low bar­rier. We will pre­sent the­o­ret­i­cal and sim­u­la­tion stud­ies of the low MP bar­rier and ex­per­i­men­tal re­sults on MP con­di­tion­ing with the sin­gle-stub FPC match­ing el­e­ment.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA86  
About • Received ※ 03 August 2022 — Revised ※ 09 August 2022 — Accepted ※ 11 August 2022 — Issue date ※ 21 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPA87 Design of the Cathode Stalk for the LCLS-II-HE Low Emittance Injector 253
 
  • T. Konomi, W. Hartung, S.H. Kim, S.J. Miller, D.G. Morris, J.T. Popielarski, K. Saito, A. Taylor, T. Xu
    FRIB, East Lansing, Michigan, USA
  • C. Adolphsen, J.W. Lewellen
    SLAC, Menlo Park, California, USA
  • S. Gatzmaga, P. Murcek, R. Xiang
    HZDR, Dresden, Germany
  • M.P. Kelly, T.B. Petersen
    ANL, Lemont, Illinois, USA
 
  Su­per­con­duct­ing ra­dio-fre­quency (SRF) elec­tron guns are at­trac­tive for de­liv­ery of beams at a high bunch rep­e­ti­tion rate with a high ac­cel­er­at­ing field. An SRF gun is the most suit­able in­jec­tor for the high-en­ergy up­grade of the Linac Co­her­ent Light Source (LCLS-II-HE), which will pro­duce high-en­ergy X-rays at high rep­e­ti­tion rate. An SRF gun is being de­vel­oped for LCLS-II-HE as a col­lab­o­ra­tive ef­fort by FRIB, HZDR, ANL, and SLAC. The cav­ity op­er­at­ing fre­quency is 185.7 MHz, and the tar­get ac­cel­er­at­ing field at the pho­to­cath­ode is 30 MV/m. The pho­to­cath­ode is re­place­able. The cath­ode is held by a fix­ture (’cath­ode stalk’) that is de­signed for ther­mal iso­la­tion and par­ti­cle-free cath­ode ex­change. The stalk must allow for pre­cise align­ment of the cath­ode po­si­tion, cryo­genic or room-tem­per­a­ture cath­ode op­er­at­ing tem­per­a­ture, and DC bias to in­hibit mul­ti­pact­ing. We are plan­ning a test of the stalk to con­firm that the de­sign meets the re­quire­ments for RF power dis­si­pa­tion and bi­as­ing. In this pre­sen­ta­tion, we will de­scribe the cath­ode stalk de­sign and RF/DC stalk test plan.  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA87  
About • Received ※ 04 August 2022 — Revised ※ 11 August 2022 — Accepted ※ 18 August 2022 — Issue date ※ 11 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPA88 FRIB and UEM LLRF Controller Upgrade 256
 
  • S.R. Kunjir, E. Bernal, D.G. Morris, S. Zhao
    FRIB, East Lansing, Michigan, USA
  • C.-Y. Ruan
    MSU, East Lansing, Michigan, USA
 
  Funding: Supported by the U.S. DOE Office of Science under Cooperative Agreement DE-SC0000661, the State of Michigan, Michigan State University and U.S. National Science Foundation grant DMR-1625181.
The Fa­cil­ity for Rare Iso­tope Beams (FRIB) is de­vel­op­ing a 644 MHz su­per­con­duct­ing (SC) cav­ity for a fu­ture up­grade pro­ject. The cur­rent low level radio fre­quency (LLRF) con­troller at FRIB is not able to op­er­ate at 644 MHz. The Ul­tra­fast Elec­tron Mi­cro­scope (UEM) lab­o­ra­tory within the De­part­ment of Physics at Michi­gan State Uni­ver­sity de­signed an LLRF con­troller based on ana­log RF com­po­nents to op­er­ate a 1.013 GHz room tem­per­a­ture (RT) cav­ity. With re­quire­ments for im­proved sta­bil­ity, per­for­mance and user con­trols there was a need to up­grade the ana­log LLRF con­troller. The FRIB radio fre­quency (RF) group de­signed, de­vel­oped and fab­ri­cated a new dig­i­tal LLRF con­troller, with high-speed se­r­ial in­ter­face be­tween sys­tem on chip field pro­gram­ma­ble gate array and fast data con­vert­ers and ca­pa­ble of high fre­quency di­rect sam­pling, to meet the re­quire­ments of 644 MHz SC cav­ity and 1.013 GHz UEM RT cav­ity. This paper gives an overview of the up­graded dig­i­tal LLRF con­troller, its fea­tures, im­prove­ments and pre­lim­i­nary test re­sults.
 
poster icon Poster MOPA88 [2.818 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA88  
About • Received ※ 01 August 2022 — Revised ※ 03 August 2022 — Accepted ※ 04 August 2022 — Issue date ※ 16 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPA89 RHIC Electron Beam Cooling Analysis Using Principle Component and Autoencoder Analysis 260
 
  • A.D. Tran, Y. Hao
    FRIB, East Lansing, Michigan, USA
  • X. Gu
    BNL, Upton, New York, USA
 
  Funding: Work supported by the US Department of Energy under contract No. DE-AC02-98CH10886.
Prin­ci­pal com­po­nent analy­sis and au­toen­coder analy­sis were used to an­a­lyze the ex­per­i­men­tal data of RHIC op­er­a­tion with low en­ergy RHIC elec­tron cool­ing (LEReC). This is un­su­per­vised learn­ing which in­cludes elec­tron beam set­tings and ob­serv­able dur­ing op­er­a­tion. Both analy­ses were used to gauge the di­men­sional re­ducibil­ity of the data and to un­der­stand which fea­tures are im­por­tant to beam cool­ing.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA89  
About • Received ※ 02 August 2022 — Revised ※ 05 August 2022 — Accepted ※ 06 August 2022 — Issue date ※ 12 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPA90 Relating Initial Distribution to Beam Loss on the Front End of a Heavy-Ion Linac Using Machine Learning 263
 
  • A.D. Tran, Y. Hao
    FRIB, East Lansing, Michigan, USA
  • J.L. Martinez Marin, B. Mustapha
    ANL, Lemont, Illinois, USA
 
  Funding: This work was supported by a sub-reward from Argonne National Laboratory and supported by the U.S. Department of Energy, under Contract No. DE-AC02-06CH11357.
This work demon­strates using a Neural Net­work and a Gauss­ian Process to model the ATLAS front-end. Var­i­ous neural net­work ar­chi­tec­tures were cre­ated and trained on the ma­chine set­tings and out­puts to model the phase space pro­jec­tions. The model was then trained on a dataset, with non-lin­ear dis­tor­tion, to gauge the trans­fer­abil­ity of the model from sim­u­la­tion to ma­chine.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA90  
About • Received ※ 02 August 2022 — Revised ※ 05 August 2022 — Accepted ※ 06 August 2022 — Issue date ※ 11 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPA91 Plasma Processing of Superconducting Quarter-Wave Resonators Using a Higher-Order Mode 267
 
  • W. Hartung, W. Chang, K. Elliott, S.H. Kim, T. Konomipresenter, J.T. Popielarski, K. Saito, T. Xu
    FRIB, East Lansing, Michigan, USA
 
  The Fa­cil­ity for Rare Iso­tope Beams (FRIB) is a su­per­con­duct­ing ion linac with ac­cel­er­a­tion pro­vided by 104 quar­ter-wave res­onators (QWRs) and 220 half-wave res­onators (HWRs); FRIB user op­er­a­tions began in May 2022. Plasma clean­ing is being de­vel­oped as a method to mit­i­gate pos­si­ble fu­ture degra­da­tion of QWR or HWR per­for­mance: in-situ plasma clean­ing rep­re­sents an al­ter­na­tive to re­moval and dis­as­sem­bly of cry­omod­ules for re­fur­bish­ment of each cav­ity via re­peat etch­ing and rins­ing. Ini­tial mea­sure­ments were done on a QWR and an HWR with room-tem­per­a­ture-matched input cou­plers to drive the plasma via the fun­da­men­tal mode. Sub­se­quent plasma clean­ing tests were done on two ad­di­tional FRIB QWRs using the fun­da­men­tal power cou­pler (FPC) to drive the plasma. When using the FPC, a higher-or­der mode (HOM) at 5 times the ac­cel­er­at­ing mode fre­quency was used to drive the plasma. Use of the HOM al­lowed for less mis­match at the FPC and hence lower field in the cou­pler rel­a­tive to the cav­ity. A neon-oxy­gen gas mix­ture was used for plasma gen­er­a­tion. Be­fore and after cold tests showed a sig­nif­i­cant re­duc­tion in field emis­sion X-rays after plasma clean­ing. Re­sults will be pre­sented.  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA91  
About • Received ※ 12 August 2022 — Revised ※ 16 August 2022 — Accepted ※ 25 August 2022 — Issue date ※ 16 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)